CCPortal
Collaborative Research: Ice Forcing in Arc Magma Plumbing Systems (IF-AMPS)
项目编号2121372
Marissa Tremblay
项目主持机构Purdue University
开始日期2021-09-01
结束日期08/31/2026
英文摘要This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
A question at the frontier of Earth science is: how do changes in the climate system on our planet's surface interact with magma reservoirs housed within its interior? We will conduct a novel blend of field observations, lab measurements, and numerical model simulations in an integrated study of links between changes in glaciers and topography, and the behavior of several active volcanoes in Chile during the last 50,000 years. These volcanoes were partly covered by the 3,000 foot thick Patagonian ice sheet until it melted rapidly beginning 18,000 years ago. This natural laboratory offers unparalleled means to investigate how the rapid loss of ice impacted the composition and rates of eruptions from these volcanoes. This project will provide career-building experience for several PhD students. A volcano & ice Summer program will engage technical school students from underrepresented groups in the US and Chile in field- and lab-based experiences, including training in drone technology for data collection and geologic mapping. Our collaborations with Chilean scientists and educators aim to: (1) enhance knowledge of the growth rates and eruptive histories of several of the most dangerous volcanoes in South America, thereby improving hazard assessment, (2) generate new climate proxy data critical to calibrating our numerical model of ice sheet retreat, and (3) train students from the communities living near these volcanoes.
Utilizing new and existing geochronologic, geochemical, glacial and erosion/deposition observations within the Andean Southern Volcanic Zone, we aim to couple a suite of numerical models to test and refine three hypotheses: (1) Over short timescales (<100,000 year), the composition, volume, and timing of eruptions are strongly influenced by climate-driven changes in surface loading. These short-term responses modulate the long-term (>100,000 year) average eruptive characteristics, which are governed by mantle melt flux, (2) Crustal stress changes associated with the local onset of rapid deglaciation and erosion at 18,000 years ago promoted eruptions by enhancing volatile exsolution that in turn pressurized stored magma and propelled dike propagation to the surface, and (3) Responses to rapid unloading will vary among volcanoes, reflecting contrasts in the composition, volatile contents, and compressibility of stored magma, as well as the rate at which crustal reservoirs are recharged from depth. This variability can be exploited to reveal fundamental controls on the sensitivity of glaciated arcs to the climate system. To investigate these hypotheses, we will pursue four objectives: (1) Generate high-resolution records of cone growth, eruptive behavior, and geochemical evolution of six volcanoes during the last ~50,000 years spanning 250 km along the subduction zone, (2) Build new records of ice retreat, and landscape evolution owing to the erosion, transport, and deposition of sediment adjacent to the six volcanoes, (3) Use the observed chemical and physical patterns in the volcanic, climatic, and topographic records to constrain crustal loading through time, and explore the effects of this forcing in numerical models, and (4) Integrate findings to contextualize processes in continental settings, and provide a framework for examining the sensitivity of arc volcanism to external forcing elsewhere and across a spectrum of climate states throughout Earth history.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$106,613.00
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/212648
推荐引用方式
GB/T 7714
Marissa Tremblay.Collaborative Research: Ice Forcing in Arc Magma Plumbing Systems (IF-AMPS).2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marissa Tremblay]的文章
百度学术
百度学术中相似的文章
[Marissa Tremblay]的文章
必应学术
必应学术中相似的文章
[Marissa Tremblay]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。