CCPortal
Collaborative Research: How do selection, plasticity, and dispersal interact to determine coral success in warmer and more variable environments?
项目编号2048678
Kirstin Meyer-Kaiser
项目主持机构Woods Hole Oceanographic Institution
开始日期2021-11-15
结束日期10/31/2024
英文摘要Coral reefs host thousands of marine species, help protect coastlines from storm damage, generate tourism, and house fish used for human consumption. However, corals are vulnerable to increasing water temperatures, which can lead to coral death. One way for reefs to survive in warming oceans is for corals that are well-suited to warmer waters to repopulate reefs that have less temperature-tolerant individuals. For this strategy to succeed, however, the more temperature-tolerant corals need to be able to disperse to and survive in these different environments. This project takes advantage of reef systems in the Pacific nation of Palau that naturally experience a wide range in temperatures across short geographic distances. Using cutting-edge ecological and genomic techniques, the team of investigators is directly testing whether young corals from Palau’s warmest reefs can successfully be carried by ocean currents to Palau’s currently cooler reefs and subsequently survive and thrive in these habitats. Given the relevance of this research for the local ecology, the team is disseminating results to the Palauan government through a written report in conjunction with Palauan scientists who are interning with the team, and to the Palauan people through public presentations. As part of this work, the investigators are maintaining a blog and are organizing a music-lecture series combining dance, music, and science to promote awareness of the coral reef crisis across English and Spanish-speaking communities in the US. Results from this project are informing restoration and conservation practices of the Coral Conservation Consortium as well as other efforts worldwide.

A major question in evolutionary biology is how plasticity and adaptation interact to influence survival under novel environments. Understanding these processes is increasingly important as rising temperatures associated with climate change influence species globally. For marine organisms with pelagic larval phases, including reef-building corals, the post-settlement period constitutes a critical bottleneck for adaptation and plasticity, with the added complexity that the conditions experienced and time spent as larvae can incur carryover effects. This project leverages reefs in Palau that span a steep environmental gradient to study how environmental variation drives selection and plasticity and to examine if dispersal between reefs limits success across habitats due to carryover effects. The investigators are testing the overarching hypothesis that corals from warmer and more variable environments are adapted to warmer temperatures and exhibit increased plasticity, but that dispersal between reefs incurs a fitness cost. The team integrates field and molecular techniques to: 1) investigate the degree of selection occurring on warmer and more variable reefs, 2) test whether corals transplanted to more variable environments improve their thermal tolerance through developmental plasticity, and 3) examine whether delays in metamorphosis required for dispersal across reefs comes at a fitness cost due to carryover effects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$433,539.00
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/212391
推荐引用方式
GB/T 7714
Kirstin Meyer-Kaiser.Collaborative Research: How do selection, plasticity, and dispersal interact to determine coral success in warmer and more variable environments?.2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kirstin Meyer-Kaiser]的文章
百度学术
百度学术中相似的文章
[Kirstin Meyer-Kaiser]的文章
必应学术
必应学术中相似的文章
[Kirstin Meyer-Kaiser]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。