CCPortal
EDGE FGT: NSF-BSF: Development of Viral Vectors for Amphibian Gene Delivery and Manipulation
项目编号2110086
Darcy Kelley
项目主持机构Columbia University
开始日期2021-09-01
结束日期08/31/2024
英文摘要Amphibians (frogs and salamanders) are key indicator species for environmental change; many are threatened by habitat loss, rising sea levels and changing temperatures as they are “cold-blooded” and do not regulate body temperature. Some species, however, are resilient in the face of climate change both in physiology (e.g., temperature regulation), developmental requirements, and changes in behavior produced by the activity of nerve cells in the brain and spinal cord. African clawed frogs (Xenopus), though they live in fresh-water throughout life, can sequester in small chambers underground for very long periods when their environment becomes dry and hot. Xenopus used these resilience strategies to survive global extinction events. Spanish ribbed newts (Pleurodeles) can regenerate their entire nervous system, even as adults. To understand why these particular amphibians are so hardy, we need to find out how particular parts of their bodies work under stressful conditions. This project aims to develop “viral vectors”, non-infectious viruses that can be delivered to, and manipulate, genes in different parts of the body. These vectors can help test ideas about, for example, which parts of the brain are involved in resilience in frogs and how newts and salamanders regenerate whole parts of the body when they are injured. Also, the process of finding viruses that can infect amphibians will help investigators using other species such as birds and may reveal new ideas about how the ability of a virus to infect a different host species evolves, leaping from bats, for example, to humans. The project also includes training of undergraduate and graduate students, exposing them to international team science, as well as conferences and workshops, and sharing of protocols and non-infectious viruses on public databases to enable similar research by other investigators.

Viruses - natural multigene expression and delivery vehicles - evolved to target different species and tissues. Engineering Adeno-Associated Viruses (AAVs) for cold-blooded vertebrates (semi-aquatic or aquatic amphibians) is the focus of this EDGE project. Recombinant AAVs production enables a directed evolution approach for high-throughput selection and screening in two amphibians: the anuran Xenopus and the newt Pleurodeles. This research characterizes the blood brain barrier in both species to identify whether – or at what developmental stage – it forms. Leveraging the NSF-supported CLOVER Center at CalTech, researchers intravenously deliver an AAV serotype that transfects both species; they then harvest the animals’ central nervous system to produce, sequence, and bioinformatically analyze the resulting variants through two rounds of screening. Because of limits in the carrying capacity of AAVs, the project is developing transgenic cre lines that express specifically in neurons for both species. Using AAVs carrying floxed-CRISPR constructs and validated gRNAs, investigators knock out two native genes – rhodopsin and tyrosinase – in the eye via intraorbital delivery. Knocks outs are verified immunohistochemically using validated antibodies. AAVs are shared at cost with collaborators and deposited in Addgene. Results are shared via a US-based virtual conference, a hands-on US workshop, and an international conference. Protocols and validated results are rendered available to the broader research community via organism-based websites (e.g., Xenbase). All data and protocols are deposited in a publicly available data base and archived at Columbia University.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$1,000,000.00
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/211704
推荐引用方式
GB/T 7714
Darcy Kelley.EDGE FGT: NSF-BSF: Development of Viral Vectors for Amphibian Gene Delivery and Manipulation.2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Darcy Kelley]的文章
百度学术
百度学术中相似的文章
[Darcy Kelley]的文章
必应学术
必应学术中相似的文章
[Darcy Kelley]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。