CCPortal
Collaborative Research: The effects of marine heatwaves on reproduction, larval transport and recruitment in sea urchin metapopulations
项目编号2023693
Rachel Simons
项目主持机构University of California-Santa Barbara
开始日期2020-10-01
结束日期09/30/2023
英文摘要Rapid and extreme warming events such as El Niño and marine heatwaves have had ecological and economic impacts on nearshore marine ecosystems. These impacts include reductions in biomass and collapses in commercial fisheries. For many species, population booms and busts are controlled by shifts in reproduction and juvenile dispersal related to warmer temperatures and ocean circulation. However, how population fluctuations are shaped by interacting processes that control adult reproduction and larval survival remains unclear. Marine heatwaves often accompany major disruptions in ocean circulation, which can affect survival and the distribution of species that produce free-floating, planktonic larvae. As a result, species can be impacted directly by temperature effects on organismal reproduction and survival, and indirectly by shifts in ocean circulation that affect larval success. This project is examining how the joint effects of temperature and ocean circulation are controlling populations of purple sea urchins (Strongylocentrotus purpuratus). To address project objectives, the team is developing oceanographic models to predict dispersal of planktonic larvae in combination with controlled experiments on adult reproductive success. This project is advancing the understanding of how ecologically important species respond to ocean temperature and circulation, which are forecast to shift under future climate change scenarios. Broader impacts of the project include training of students and post-docs in STEM and educational outreach. Curriculum development and implementation is occurring in collaboration with existing K-12 outreach programs that focus on underserved communities and under-represented groups. The goal is to empower the next generation of scientists to use integrative approaches to predict ecological consequences of climate change.

Purple sea urchins are an ideal species for studying the coupled impacts of warming and ocean circulation on recruitment and survival given a wealth of ecological and organismal data. The species has a mapped genome, can be transported large distances as larvae by ocean currents, and larval abundances in California exhibit orders of magnitude variation with heatwaves and El Niño fluctuations. To quantify the processes that shape spatial and temporal variability in larval supply, researchers are applying a novel combination of biophysical modeling, experiments and statistical modeling of long-term, high-resolution data on larval settlement across the Southern California Bight (SCB). Research module 1 is quantifying spatial and temporal patterns of larval transport using a 3D-biophysical model of the SCB. The model is testing how interactions among historical changes in ocean circulation and temperature, larval life history, and larval behavioral traits affect variation in larval supply in space and time. Research module 2 is focused on how temperature could affect spatial and temporal variation in egg production. Experiments are characterizing reproductive thermal performance curves and quantifying how these vary among populations and organismal history. A novel assay is assessing epigenetic regulation of gene expression associated with performance curves. Finally, Module 3 will integrate mechanistic models from Modules 1 and 2 to statistically assess their ability to explain spatial and temporal trends in a nearly three-decade dataset of larval settlement from six sites in the SCB. This is one of the first studies that integrates models of larval transport, reproductive performance and settlement data to empirically test how physical and biological processes affect local recruitment patterns in complex marine meta-populations.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$211,707.00
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/211668
推荐引用方式
GB/T 7714
Rachel Simons.Collaborative Research: The effects of marine heatwaves on reproduction, larval transport and recruitment in sea urchin metapopulations.2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rachel Simons]的文章
百度学术
百度学术中相似的文章
[Rachel Simons]的文章
必应学术
必应学术中相似的文章
[Rachel Simons]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。