CCPortal
Collaborative Research: Elucidating unifying principles of soil carbon-nitrogen coupling using a continental-scale grassland experimental network
项目编号1556529
Sarah Hobbie
项目主持机构University of Minnesota-Twin Cities
开始日期2016-06-15
结束日期05/31/2022
英文摘要Human activities such as fertilizer use on crops, cultivation of soybean crops, and fossil fuel burning are increasing the amount of nitrogen gas that is circulating in the atmosphere and coming down in rain and snow in what is known as nitrogen deposition. The full impacts of high amounts of nitrogen deposition on ecosystems around the world are not well known. In particular, how nitrogen deposition alters the amounts and forms of carbon in soils is very poorly understood. Yet, achieving better understanding of this so-called coupling between the nitrogen and carbon cycles is important for life on earth. Plants and soils exchange large amounts of carbon dioxide with the atmosphere each year and so small changes in the rate of that exchange could affect how fast carbon dioxide in the air is rising. This project will integrate results from extensive cross-site, coordinated field experiments with modeling to improve our mechanistic understanding of the coupling of belowground carbon and nitrogen in grassland ecosystems. This is a key knowledge gap for Earth system models used to predict the biogeochemical consequences of human-caused global environmental changes and to refine predictions of carbon cycle feedbacks to climate change. This project will also connect researchers with education and outreach programs of the Cedar Creek Long-Term Ecological Research project. These programs are aimed at training K-12 students and teachers and increasing participation and retention of women and members of other underrepresented groups in science, with a special focus on mentoring undergraduate Native Americans in research. Project investigators will also mentor graduate students and post-doctoral scholars.

This research will use a network of decade-long nutrient addition experiments in North American grasslands, the Nutrient Network, to study how enhanced nitrogen inputs influence soil microbial dynamics, soil carbon cycling, and the release of carbon dioxide to the atmosphere. Results will be used to enhance the Microbial ENzyme Decomposition (MEND) model towards determining how nitrogen inputs affect: (1) biochemical stabilization of soil organic matter (SOM) by altering the quantity and quality of plant inputs to soils, and soil microbial community structure, stoichiometry, and functional potential; and (2) physicochemical stabilization of SOM by altering soil aggregate formation and SOM-mineral interactions. Results of computer simulation models of ecosystem carbon and nitrogen cycling will be made available to the scientific community at large through the Accelerated Climate Model for Energy program at the Department of Energy. All data generated from the proposed work will also be made publically available through the Nutrient Network research project and the Long-Term Ecological Research network.
资助机构US-NSF
项目经费$842,372.00
项目类型Continuing Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/211651
推荐引用方式
GB/T 7714
Sarah Hobbie.Collaborative Research: Elucidating unifying principles of soil carbon-nitrogen coupling using a continental-scale grassland experimental network.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sarah Hobbie]的文章
百度学术
百度学术中相似的文章
[Sarah Hobbie]的文章
必应学术
必应学术中相似的文章
[Sarah Hobbie]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。