CCPortal
CREST-PRF: Identifying Zones of Biological Activity Using a Spatially Distributed Metabolism Model in an Aridland River
项目编号1914778
Betsy Summers
项目主持机构Summers, Betsy Marie
开始日期2020-01-15
结束日期12/31/2021
英文摘要The Centers of Research Excellence in Science and Technology-Postdoctoral Research Fellowship (CREST-PRF) track within the CREST program supports beginning CREST Center investigators with significant potential and provides them with training and research experiences that will broaden perspectives, facilitate interdisciplinary interactions and establish them in positions of leadership within the scientific community. This CREST-PRF project is aligned with the research focus of the CREST Center for Water and the Environment (CWE) at the University of New Mexico. The goal of this research is to measure the extent of time and space variability in primary production and ecosystem respiration in an aridland river system. Aridland rivers have characteristic zones of primary production at the river edges (i.e., bathtub ring) that provides a substantial food source to consumer organisms. Yet, metabolism of these systems is likely underestimated when applying common methods for whole-system metabolism. Addressing space variation into metabolism models will offer new insight on methods for quantifying gross primary production (GPP) and ecosystem respiration (ER) and understanding of drivers of metabolism. The following objectives focus on a 9 km study reach in the middle Rio Grande, New Mexico: Objective 1 is to identify space and time variability of gross primary production and ecosystem respiration; Objective 2 is to compare methodology used to quantify metabolism; and Objective 3 is to explore the influence of changing discharge on the zone of biological productivity. The knowledge gained is transferrable to other river systems and can be used as a tool to inform managers on environmental flows that are most effective at restoring aquatic habitat, ecosystem function and survival of endangered species.

Dryland rivers, which encompasses aridland rivers, are poorly studied systems in the field of metabolism; yet, are the most vulnerable systems regarding changing climate conditions. Spatiotemporal information learned about metabolic rates in an aridland river network can be integrated into estimates of regional and global carbon budgets analyzed by the Intergovernmental Panel on Climate Change. Common methods of whole-system metabolism assume estimates of GPP and ER are representative of the whole reach. However, stream metabolism is not homogeneous and varies spatially in aridland rivers. The level of spatial and temporal complexity analyzed in this research project will advance fundamental knowledge in controls on carbon processes at multiple scales. This project integrates multiple sources of longterm, high resolution environmental data collected by several entities and leverages robust computational resources to process big data. Taking a holistic approach, this research will contribute to the basic understanding of the productivity of aridland rivers and the role in regional carbon budgets. Moreover, this research site is germane to engineered river systems undergoing reductions and alterations of streamflow and subsequent degradation of water quality and nutrient pollution downstream. Modeling methods and results will be transferable to large river systems.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$200,000.00
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/211646
推荐引用方式
GB/T 7714
Betsy Summers.CREST-PRF: Identifying Zones of Biological Activity Using a Spatially Distributed Metabolism Model in an Aridland River.2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Betsy Summers]的文章
百度学术
百度学术中相似的文章
[Betsy Summers]的文章
必应学术
必应学术中相似的文章
[Betsy Summers]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。