CCPortal
Collaborative Research: Tipping points in coral reefs and their associated microbiomes: interactive effects of corallivory, herbivory, and nutrient pollution
项目编号2023424
Rebecca Vega
项目主持机构Oregon State University
开始日期2020-08-15
结束日期07/31/2024
英文摘要Coral reefs are some of the most diverse, yet most imperiled, ecosystems on the planet. Global change has driven the decline of corals worldwide with many reefs now lacking corals and being overrun by macroalgae. This research examines the impacts of several factors of thermal stress, overfishing of important herbivorous fishes, and nutrient pollution on the health of corals and their ability to recover after large coral-killing disturbances. Importantly, the investigators address the impacts of global change on the coral microbiome, the microbes that associate with corals and impact coral health. The overarching hypothesis is that factors such as overfishing and nutrient pollution impact coral health via impacts to their microbes. This 6-year experiment on the coral reefs of Mo’orea, French Polynesia to examines what levels of herbivory, mostly by parrotfishes and surgeonfishes, are needed to provide resistance and resilience of corals and their microbiomes when reefs are exposed to elevated nutrients and ocean temperatures. Notably, the team tests how local stressors (overfishing, nutrient pollution) potentially interact with global stressors (climate change and rising ocean temperatures) to impact coral reef health. This research may yield insight into how to manage local factors (reducing fishing, mitigating nutrient pollution) to help corals survive the global stress of climate change. The field experiment provides a realistic platform to test questions about how local management of fisheries can alter reef health and provides data about the recoverability of reefs should new water quality management be put into place. This interdisciplinary work trains a new generation of both marine ecologists and microbiologists, including one postdoctoral researcher, two graduate students, as well as numerous undergraduates. The main international outreach effort is to map the microbiome of the island of Mo’orea. Mo’orea is approximately 130 square-kilometers in area and has five major watersheds that transport sediment and nutrients to the nearshore coral reef ecosystems. Thus poor stewardship of these watersheds likely contributes to the local phase shifts currently occurring in several areas of the lagoon. Therefore the team has engaged the local community to help collect microbiome samples from 50 terrestrial, 50 stream, 25 coastal sites, and 25 offshore sites around the island. The sampling effort is generating an island-wide map of the microbial communities associated with the soils, streams, and coastal waters that can be linked to adjacent coral reef health - The Moorea Microbiome! As part of this outreach effort, the team also collaborates with filmmakers to make a trilingual (English, French, and Tahitian) film about the project to serve as local engagement and teaching tool to help educate school groups and different stakeholders about both the seen and unseen connections between land and sea on their island.

On the island of Mo’orea, French Polynesia, coral communities have exhibited strikingly different trajectories, with some reefs recovering from disturbances and others undergoing protracted coral decline, accompanied by an increase in macroalgae. This diversity in coral community dynamics makes Mo’orea an excellent model system for testing why some reefs are resilient and return to abundant coral while others are not and undergo persistent phase shifts to macroalgal dominance. This 6-year experiment will measure the dynamics of benthic communities, coral demography, and the coral microbiome across seasonal change in ocean temperature, allowing the team to (1) link changes in coral microbiomes (e.g., a rise in pathogenic bacteria) to the trajectories of coral decline or recovery and (2) link nutrients, herbivory, and temperature to phase shifts in both benthic communities and coral microbiomes. Importantly, the team is testing the resistance of phase shifts of benthic communities and coral microbiomes by measuring their changes after removing the nutrient enrichment treatment at the end of year 3 and tracking recovery of the system for 3 more years. Thus, this project begins to answer whether reef and microbial community phase shifts can be easily reversed once they occur. Many studies have focused on the factors that disassemble coral reef communities, but this is the first to examine how reef communities can be reassembled from the microbiome upwards.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$799,871.00
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/211269
推荐引用方式
GB/T 7714
Rebecca Vega.Collaborative Research: Tipping points in coral reefs and their associated microbiomes: interactive effects of corallivory, herbivory, and nutrient pollution.2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rebecca Vega]的文章
百度学术
百度学术中相似的文章
[Rebecca Vega]的文章
必应学术
必应学术中相似的文章
[Rebecca Vega]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。