CCPortal
Polar Explorer - A Virtual Learning Environment for Polar Science Education
项目编号2110999
Kevin Schaefer
项目主持机构University of Colorado at Boulder
开始日期2021-07-15
结束日期06/30/2026
英文摘要Scientists at Northern Arizona University, Arizona State University, the University of Arizona, and the University of Colorado at Boulder will collaborate to develop a digital learning environment called Polar Explorer for this Engaged Student Learning: Level III project. In this web-based, immersive environment, students will explore inaccessible polar environments and learn about polar science from their laptops, desktops, or mobile devices. The Arctic is a remote, rapidly changing region with extreme variations in temperature and sunlight. Much of the Arctic is underlain by permafrost, a layer of soil or sediment that is perennially frozen. Over the past three decades, the Arctic has warmed at twice the rate of the rest of the world and permafrost has started to thaw. Thawing permafrost can release enormous amounts of previously frozen greenhouse gases to the atmosphere, accelerating the pace of climate change. It can also threaten the food security and clean water of local residents, lead to the erosion of landscapes, the collapse of buildings and roads, and increased risk of wildfires. Thus, climate warming is transforming the Arctic, and this transformation threatens U.S. national security through its impacts on infrastructure, global climate, and public health. It is therefore imperative for the general public to understand how the Arctic is changing and why these changes have significant consequences for the U.S. and the rest of the world. However, teaching students about permafrost and its consequences is challenging because of the remoteness and inaccessibility of the Arctic. Polar systems are also complex and changes in polar environments occur on many different scales that can be difficult for the mind to grasp. Polar Explorer’s interactive, virtual field trips will leverage intelligent tutoring systems and virtual reality technologies to allow students to do science, rather than just being told about science. Using realistic, scientifically-accurate landscapes and learning experiences, students will experience and learn about the Arctic environment much like they would if they were physically there — regardless of a student’s socioeconomic background, physical ability, or level of academic preparation. Through innovative learning design and virtual reality technologies, Polar Explorer provides a novel and transformative approach for improving STEM education; one that will cultivate a sense of curiosity and connection-to-place and will generate new knowledge about STEM teaching and learning.

The goal of this project is to design, build, deploy, and evaluate the effectiveness of Polar Explorer at increasing student conceptual knowledge of permafrost, its dynamics, and the consequences of permafrost degradation on ecosystems, infrastructure, climate, and society. Polar Explorer will consist of a suite of Learning Experiences (LXs) built around interactive Virtual Field Trips (iVFTs), connected via a high-resolution rendered landscape generated from real Arctic terrain data. Seven place-based LXs will cover topics of Arctic exploration, permafrost dynamics, indigenous perspectives on changing landscapes, and impacts of permafrost thaw on infrastructure, carbon feedbacks, and human health. Students will have autonomy in choosing their learning path through the LXs, which will leverage virtual reality technology, an engaging narrative, a diverse population of real polar scientists, and real-world data and places to provide context to student learning. An intelligent tutoring system will individualize the student experience and help address conceptual gaps in knowledge. Polar Explorer’s iVFTs will effectively promote active, inquiry-based learning and resolve the substantial accessibility challenges inherent to polar science. It is predicted that students will: (1) increase their polar science disciplinary knowledge; (2) examine and differentiate multiple scales; and (3) improve their comprehension of transdisciplinary connections in polar science. Polar Explorer will run on HTML5, which has ubiquitous support. The design of the student-driven exploration will target students in critical undergraduate introductory STEM courses, such as geology, earth science, climate, and biology. Overall the project will be assessed by analyzing student learning outcomes, and by formative and summative evaluations that measure the effectiveness of the iVFT-based LXs in meeting project goals. This project will provide much needed metrics on the degree to which iVFTs and adaptive digital learning environments, and the associated approach to learning design, promote STEM learning. Specific focus will be placed on how iVFT-based learning experiences help students work across scales and understand connections across STEM concepts and disciplines. This project, jointly supported by the Office of Polar Programs and the Division of Undergraduate Education, responds to the Dear Colleague Letter (NSF 19-086) calling for efforts that support the engagement of students and the public in polar research.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$121,312.00
项目类型Continuing Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/210827
推荐引用方式
GB/T 7714
Kevin Schaefer.Polar Explorer - A Virtual Learning Environment for Polar Science Education.2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kevin Schaefer]的文章
百度学术
百度学术中相似的文章
[Kevin Schaefer]的文章
必应学术
必应学术中相似的文章
[Kevin Schaefer]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。