CCPortal
Collaborative Research: Toward placing contemporary Arctic summer warming in a millennial perspective with a pan-Arctic record of Neoglacial crysophere expansion
项目编号2100379
Darrell Kaufman
项目主持机构Northern Arizona University
开始日期2021-07-15
结束日期06/30/2022
英文摘要Miller/Kaufman: Toward placing contemporary Arctic summer warming in a millennial perspective with a pan- Arctic record of Neoglacial crysophere expansion

Non-technical summary. Glacier dimensions in the Arctic are set by summer temperature, but changes in the dimensions of Alaskan glaciers since the end of the ice age are poorly constrained. In response to recent Arctic warming, glaciers in the Brooks Range, Alaska are receding rapidly, and in special settings, on gentle slopes where the ice is thin, glaciers act as preservation agents, rather than erosive agents, preserving intact tiny tundra plants living before the ice expanded over that site in the distant past. The goal of this project is to visit the most likely sites in the Brooks Range where glaciers preserved, rather than eroded the landscape, where we expect tundra plants are being re-exposed as ice recedes. The radiocarbon ages of these plants document when past summers grew colder, allowing ice to expand across these sites, and provide the most reliable
evidence of when in the past Arctic summers cooled enough to allow glaciers to grow.
Broader Impacts. Comparing the ages of ice-entombed Alaska plants to ages of plants exposed in other Arctic regions will allow us to better understand large-scale climate change on a hemispheric scale. These results serve as tests for climate models that are used to predict future climate. The same models used for future projections can be run in reverse to predict climate evolution in the past. If the models predict similar patterns of past climate change as documented by the ages of ice-entombed plants across the Arctic, our confidence in the ability of climate models to reliably predict future climate is increased. If the models fail to predict patterns similar to the plant ages, then it is likely the models have underestimated certain aspects of the climate system.

Technical summary. Changes in the dimensions of Brooks Range glaciers through the Holocene, a primary proxy for changes in summer temperature, are poorly constrained. Where glaciers are cold-based and on gently sloping terrain, they often do not erode, but act as exceptional preservation agents, preserving tiny tundra plants killed by expanding ice. Rapid ice recession across the Brooks Range is now exposing landscapes likely to preserve in situ tundra plants killed by late Holocene ice expansion, with their radiocarbon ages defining episodes of consistently cold summers. This project will visit the most promising sites to look for iceentombed plants emerging as the ice margins recede, and take advantage of the new NSF-supported accelerator mass spectrometer at Northern Arizona University for dating. We expect the resultant composite probability density functions of dated plants to produce age clusters reflecting episodes of ice expansion/cold summers, which can be compared with results from the North Atlantic Arctic, and collectively serve as targets for Common Era climate modeling now underway with CMIP-6.
Broader Impacts. Communicating climate change with the wider public is more important than ever as climate change accelerates and climate literacy lags. Although it's widely understood that glaciers in Alaska (and elsewhere) are rapidly receding, there is less understanding of how unusual this recession really is. This study will place glacier recession in a millennial perspective, likely illustrating that current warming is unprecedented over thousands of years, a concept easily grasped by the general public. To advance public outreach, we will support an experienced graphic designer to translate our science to a form that is accessible to the citizens of Alaska and the broader US community.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$55,333.00
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/210593
推荐引用方式
GB/T 7714
Darrell Kaufman.Collaborative Research: Toward placing contemporary Arctic summer warming in a millennial perspective with a pan-Arctic record of Neoglacial crysophere expansion.2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Darrell Kaufman]的文章
百度学术
百度学术中相似的文章
[Darrell Kaufman]的文章
必应学术
必应学术中相似的文章
[Darrell Kaufman]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。