CCPortal
DOI10.1016/j.earscirev.2019.102897
Principles and methods of scaling geospatial Earth science data
Ge Y.; Jin Y.; Stein A.; Chen Y.; Wang J.; Wang J.; Cheng Q.; Bai H.; Liu M.; Atkinson P.M.
发表日期2019
ISSN0012-8908
卷号197
英文摘要The properties of geographical phenomena vary with changes in the scale of measurement. The information observed at one scale often cannot be directly used as information at another scale. Scaling addresses these changes in properties in relation to the scale of measurement, and plays an important role in Earth sciences by providing information at the scale of interest, which may be required for a range of applications, and may be useful for inferring geographical patterns and processes. This paper presents a review of geospatial scaling methods for Earth science data. Based on spatial properties, we propose a methodological framework for scaling addressing upscaling, downscaling and side-scaling. This framework combines scale-independent and scale-dependent properties of geographical variables. It allows treatment of the varying spatial heterogeneity of geographical phenomena, combines spatial autocorrelation and heterogeneity, addresses scale-independent and scale-dependent factors, explores changes in information, incorporates geospatial Earth surface processes and uncertainties, and identifies the optimal scale(s) of models. This study shows that the classification of scaling methods according to various heterogeneities has great potential utility as an underpinning conceptual basis for advances in many Earth science research domains. © 2019 Elsevier B.V.
英文关键词Autocorrelation; Change-of-support; Heterogeneity; Scaling
语种英语
scopus关键词autocorrelation; downscaling; Earth science; heterogeneity; spatial analysis; upscaling
来源期刊EARTH-SCIENCE REVIEWS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/209837
作者单位State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China; Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing, 210023, China; Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, AE 7500, Netherlands; School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China; State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China; School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China; Lancaster Environment Center, Faculty of Science and Technology, Lancaster University, Lancaster, LA1 4YR, U...
推荐引用方式
GB/T 7714
Ge Y.,Jin Y.,Stein A.,et al. Principles and methods of scaling geospatial Earth science data[J],2019,197.
APA Ge Y..,Jin Y..,Stein A..,Chen Y..,Wang J..,...&Atkinson P.M..(2019).Principles and methods of scaling geospatial Earth science data.EARTH-SCIENCE REVIEWS,197.
MLA Ge Y.,et al."Principles and methods of scaling geospatial Earth science data".EARTH-SCIENCE REVIEWS 197(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ge Y.]的文章
[Jin Y.]的文章
[Stein A.]的文章
百度学术
百度学术中相似的文章
[Ge Y.]的文章
[Jin Y.]的文章
[Stein A.]的文章
必应学术
必应学术中相似的文章
[Ge Y.]的文章
[Jin Y.]的文章
[Stein A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。