Climate Change Data Portal
DOI | 10.1016/j.earscirev.2020.103093 |
Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis | |
Chew D.; O'Sullivan G.; Caracciolo L.; Mark C.; Tyrrell S. | |
发表日期 | 2020 |
ISSN | 0012-8772 |
卷号 | 202 |
英文摘要 | Interpreting the wealth of new data derived from the diverse suite of modern single-grain provenance approaches available to a sedimentologist requires a thorough understanding of the potential biases in the information recorded by each mineral-provenance system. This review focuses on the various possible mineral-specific biases in U-Pb accessory mineral provenance studies employing the minerals zircon, rutile, apatite, monazite and titanite, focussing on biases resulting from variations in source-rock mineralogy (fertility). Fertility is intimately linked to the mineral petrogenesis of crystalline basement sources, which is another key aspect of this review. This petrogenetic information, which often resides in the specialist petrology literature, has great relevance to fertility studies (particularly those measuring mineral content in modern river sediment using confluence and along-trunk sampling) as trace-element abundances and/or elemental ratios in many accessory minerals can be linked to specific lithologies. Other mineral-specific biases in single-grain provenance analysis considered include physical and chemical modifications both before and after deposition, while the diverse suite of modern single-grain analytical approaches also requires understanding of potential methodological and laboratory induced-biases. A series of multi-proxy provenance studies are presented where fertility bias apparently plays a significant role. In magma-poor metamorphic belts (e.g. segments of the Himalayas and Caledonides-Appalachians), it is shown that zircon growth is limited, and monazite, apatite or rutile associated with the youngest tectonomagmatic events are significantly more fertile. Such multi-proxy provenance studies will be greatly aided in the future by high-throughput, coupled U-Pb age – trace-element analyses integrated with automated heavy mineral determinations employing highly efficient sample preparation protocols. © 2020 |
语种 | 英语 |
scopus关键词 | accessory mineral; apatite; detrital deposit; monazite; petrogenesis; petrology; provenance; rutile; sedimentary petrology; sedimentology; titanite; trace element; uranium-lead dating; Appalachians; Caledonides; Himalayas |
来源期刊 | EARTH-SCIENCE REVIEWS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/209701 |
作者单位 | Department of Geology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland; School of Earth Sciences, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland; FAU Erlangen-Nürnberg, Geozentrum Nordbayern, Lehrstuhl für Geologie, Schlossgarten 5, Erlangen, 91054, Germany; Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland, Galway, Ireland |
推荐引用方式 GB/T 7714 | Chew D.,O'Sullivan G.,Caracciolo L.,et al. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis[J],2020,202. |
APA | Chew D.,O'Sullivan G.,Caracciolo L.,Mark C.,&Tyrrell S..(2020).Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis.EARTH-SCIENCE REVIEWS,202. |
MLA | Chew D.,et al."Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis".EARTH-SCIENCE REVIEWS 202(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。