Climate Change Data Portal
DOI | 10.1016/j.tecto.2021.228901 |
Characterizing the physical properties of gelatin, a classic analog for the brittle elastic crust, insight from numerical modeling | |
Smittarello D.; Pinel V.; Maccaferri F.; Furst S.; Rivalta E.; Cayol V. | |
发表日期 | 2021 |
ISSN | 00401951 |
卷号 | 812 |
英文摘要 | Precise characterization of the mechanical properties of gelatin, a classic analog of the elastic crust, is necessary for scaling the mechanical models of the Earth's crust behavior in laboratory experiments. Here we reassess how to accurately calculate the Young modulus (E) of gelatin contained in experimental tanks. By means of dedicated analog experiments and finite element simulations, we estimate the bias introduced by using equations appropriate for a half-space to interpret the subsidence due to a cylindrical surface load applied on the gelatin. In the case of a standard experimental setup with gelatin adhering to the tank wall, we find E is overestimated by at least 5% for a box with lateral size smaller than 20 times the cylinder diameter. In addition, we deduce a correction factor to be applied when using an analytical formula. We confirm that measuring the shear velocity leads to accurate estimates for the rigidity of gelatin. We also propose a new method for in situ Young's modulus estimation, relying on the length of air-filled propagating crack. Indeed, for a given injected volume, this length depends only on the density contrast between air and gelatin and on the Young's modulus of the gelatin. The fracture toughness of the gelatin is estimated independently. Direct comparison between fracture toughness and Young's modulus shows that for a given Young's modulus, salted gelatin has a higher fracture toughness than unsalted gelatin. © 2021 Elsevier B.V. |
关键词 | Analog modelingCrack propagationFracture toughnessGelatinYoung's modulus |
英文关键词 | Elastic moduli; Geometry; Shear flow; Structural geology; Tanks (containers); Analytical formulas; Correction factors; Cylinder diameters; Cylindrical surface; Finite element simulations; In-laboratory experiments; Mechanical model; Shear velocities; Fracture toughness; analog model; crack propagation; crust; finite element method; fracture toughness; numerical model; physical property; Young modulus |
语种 | 英语 |
来源期刊 | Tectonophysics
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/208072 |
作者单位 | University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, UGE, ISTerre, Grenoble, France; Deutsches GeoForschungsZentrum GFZ, Section 2.1, Potsdam, Germany; European Center for Geodynamics and Seismology, 19 rue Josy Welter, Walferdange, L-7256, Luxembourg; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli - Osservatorio Vesuviano, Via Diocleziano 328, Napoli, 80124, Italy; Section of Geophysics, Department of Physics and Astronomy, Alma Mater Studiorum University of Bologna, Viale Berti Pichat 8, Bologna, 40127, Italy; Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, F-63000, France |
推荐引用方式 GB/T 7714 | Smittarello D.,Pinel V.,Maccaferri F.,et al. Characterizing the physical properties of gelatin, a classic analog for the brittle elastic crust, insight from numerical modeling[J],2021,812. |
APA | Smittarello D.,Pinel V.,Maccaferri F.,Furst S.,Rivalta E.,&Cayol V..(2021).Characterizing the physical properties of gelatin, a classic analog for the brittle elastic crust, insight from numerical modeling.Tectonophysics,812. |
MLA | Smittarello D.,et al."Characterizing the physical properties of gelatin, a classic analog for the brittle elastic crust, insight from numerical modeling".Tectonophysics 812(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。