Climate Change Data Portal
DOI | 10.1016/j.tecto.2020.228685 |
Three-dimensional numerical simulation of the interseismic and coseismic phases associated with the 6 April 2009, Mw 6.3 L'Aquila earthquake (Central Italy) | |
Albano M.; Barba S.; Bignami C.; Carminati E.; Doglioni C.; Moro M.; Stramondo S.; Saroli M. | |
发表日期 | 2021 |
ISSN | 00401951 |
卷号 | 798 |
英文摘要 | Although several observations have been reported in the literature before a strong earthquake, their relation with the forthcoming event is often controversial. Since many physical processes and parameters govern the dynamics of preparation, initiation, and occurrence of earthquakes, their understanding is essential for explaining anomalous seismological, geophysical, hydrological and geodetic signals before a strong earthquake that may be considered for seismic monitoring and hazard assessment. In this work, the interseismic and coseismic stress and strain fields associated with the 6 April 2009, Mw 6.3 L'Aquila earthquake are calculated via a 3D numerical model designed to simulate the crustal interseismic loading and the coseismic brittle episodic dislocation along the fault. The model adopts a framework of gravitational and tectonic forces that are compatible with the geodynamics of the Central Apennines region of the Italian territory. The model assumes a brittle upper crust, where the fault has stick-slip behaviour, and a plastic deeper crust, where the fault is in stationary creep. The results indicate that the concurrent action of gravitational and tectonic forces determines steep interseismic stress gradients at the transition between the creeping and locked fault planes that promote the coseismic subsidence of the hanging wall. The interseismic strain above the transition between that locked upper fault and its unlocked lower shear zone develops a dilated volume in the hanging wall and a contracted volume in the footwall. These stress and strain variations are compatible with seismological, geophysical and geodetic anomalies observed before the earthquake, i.e., Vp/Vs anomalies and location of foreshocks. Interseismic stress and strain patterns invert during the coseismic stage. The dilated volume, formed during the interseismic phase, will be contracted at the coseismic stage and, conversely, the footwall volume previously contracted will be expanded. © 2020 |
关键词 | Coulomb stressDilatancyGravitational forceInSARL'Aquila earthquakeNumerical modelTectonic force |
英文关键词 | 3D modeling; Faulting; Geodesy; Geodynamics; Numerical models; Slip forming; Stick-slip; 3-D numerical modeling; Central Apennines; Hazard Assessment; L'aquila earthquakes; Seismic monitoring; Stress and strain; Strong earthquakes; Three-dimensional numerical simulations; Earthquakes; computer simulation; coseismic process; earthquake event; earthquake magnitude; earthquake mechanism; fault zone; hazard assessment; interferometry; numerical model; seismic hazard; seismicity; strong motion; synthetic aperture radar; tectonic setting; three-dimensional modeling; Abruzzi; Apennines; Italy; L'Aquila; Aquila |
语种 | 英语 |
来源期刊 | Tectonophysics
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/207933 |
作者单位 | Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna murata 605, Roma, 00143, Italy; Dipartimento di Scienze della Terra, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, Roma, 00185, Italy; Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio meridionale, via G. di Biasio 43, Cassino (FR), 03043, Italy |
推荐引用方式 GB/T 7714 | Albano M.,Barba S.,Bignami C.,et al. Three-dimensional numerical simulation of the interseismic and coseismic phases associated with the 6 April 2009, Mw 6.3 L'Aquila earthquake (Central Italy)[J],2021,798. |
APA | Albano M..,Barba S..,Bignami C..,Carminati E..,Doglioni C..,...&Saroli M..(2021).Three-dimensional numerical simulation of the interseismic and coseismic phases associated with the 6 April 2009, Mw 6.3 L'Aquila earthquake (Central Italy).Tectonophysics,798. |
MLA | Albano M.,et al."Three-dimensional numerical simulation of the interseismic and coseismic phases associated with the 6 April 2009, Mw 6.3 L'Aquila earthquake (Central Italy)".Tectonophysics 798(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。