Climate Change Data Portal
DOI | 10.1016/j.scib.2021.04.014 |
Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks | |
Zhang X.; Lu J.; Wang Z.; Wang R.; Wei J.; Shi T.; Dou C.; Wu Z.; Zhu J.; Shang D.; Xing G.; Chan M.; Liu Q.; Liu M. | |
发表日期 | 2021 |
ISSN | 20959273 |
起始页码 | 1624 |
结束页码 | 1633 |
卷号 | 66期号:16 |
英文摘要 | Spiking neural network, inspired by the human brain, consisting of spiking neurons and plastic synapses, is a promising solution for highly efficient data processing in neuromorphic computing. Recently, memristor-based neurons and synapses are becoming intriguing candidates to build spiking neural networks in hardware, owing to the close resemblance between their device dynamics and the biological counterparts. However, the functionalities of memristor-based neurons are currently very limited, and a hardware demonstration of fully memristor-based spiking neural networks supporting in-situ learning is very challenging. Here, a hybrid spiking neuron combining a memristor with simple digital circuits is designed and implemented in hardware to enhance neuron functions. The hybrid neuron with memristive dynamics not only realizes the basic leaky integrate-and-fire neuron function but also enables the in-situ tuning of the connected synaptic weights. Finally, a fully hardware spiking neural network with the hybrid neurons and memristive synapses is experimentally demonstrated for the first time, and in-situ Hebbian learning is achieved with this network. This work opens up a way towards the implementation of spiking neurons, supporting in-situ learning for future neuromorphic computing systems. © 2021 Science China Press |
关键词 | Fully hardwareHybrid neuronIn-situ learningMemristorSpiking neural network |
英文关键词 | CMOS integrated circuits; Data handling; Memristors; Neural networks; Fully hardware; Human brain; Hybrid neuron; In-situ learning; Memristor; Neural-networks; Neuromorphic computing; Neuron functions; Spiking neural network; Spiking Neurones; Neurons |
语种 | 英语 |
来源期刊 | Science Bulletin
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/207674 |
作者单位 | Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China; Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, Hong Kong; Zhejiang Laboratory, Hangzhou, 311122, China; Department of Electronic and Computer Engineering, the Hong Kong University of Science and Technology, Hong Kong, Hong Kong |
推荐引用方式 GB/T 7714 | Zhang X.,Lu J.,Wang Z.,et al. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks[J],2021,66(16). |
APA | Zhang X..,Lu J..,Wang Z..,Wang R..,Wei J..,...&Liu M..(2021).Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks.Science Bulletin,66(16). |
MLA | Zhang X.,et al."Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks".Science Bulletin 66.16(2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang X.]的文章 |
[Lu J.]的文章 |
[Wang Z.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang X.]的文章 |
[Lu J.]的文章 |
[Wang Z.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang X.]的文章 |
[Lu J.]的文章 |
[Wang Z.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。