Climate Change Data Portal
DOI | 10.1016/j.scib.2020.10.015 |
Embryonic exposure to hyper glucocorticoids suppresses brown fat development and thermogenesis via REDD1 | |
Chen Y.-T.; Hu Y.; Yang Q.-Y.; Liu X.-D.; Son J.S.; de Avila J.M.; Zhu M.-J.; Du M. | |
发表日期 | 2021 |
ISSN | 20959273 |
起始页码 | 478 |
结束页码 | 489 |
卷号 | 66期号:5 |
英文摘要 | Maternal stress during pregnancy is prevailing worldwide, which exposes fetuses to intrauterine hyper glucocorticoids (GC), programming offspring to obesity and metabolic diseases. Despite the importance of brown adipose tissue (BAT) in maintaining long-term metabolic health, impacts of prenatal hyper GC on postnatal BAT thermogenesis and underlying regulations remain poorly defined. Pregnant mice were administrated with synthetic GC dexamethasone (DEX) at levels comparable to fetal GC exposure of stressed mothers. Prenatal GC exposure dose-dependently reduced BAT thermogenic activity, contributing to lower body temperature and higher mortality of neonates; such difference was abolished under thermoneutrality, underscoring BAT deficiency was the major contributor to adverse changes in postnatal thermogenesis due to excessive GC. Prenatal GC exposure highly activated Redd1 expression and reduced Ppargc1a transcription from the alternative promoter (Ppargc1a-AP) in neonatal BAT. During brown adipocyte differentiation, ectopic Redd1 expression reduced Ppargc1a-AP expression and mitochondrial biogenesis; and the inhibitory effects of GC on mitochondrial biogenesis and Ppargc1a-AP expression were blocked by Redd1 ablation. Redd1 reduced protein kinase A phosphorylation and suppressed cyclic adenosine monophosphate (cAMP) -responsive element-binding protein (CREB) binding to the cAMP regulatory element (CRE) in Ppargc1a-AP promoter, leading to Ppargc1a-AP inactivation. In summary, excessive maternal GC exposure during pregnancy dysregulates Redd1-Ppargc1a-AP axis, which impairs fetal BAT development, hampering postnatal thermogenic adaptation and metabolic health of offspring. © 2020 Science China Press |
关键词 | Brown fatFetusGlucocorticoidsMaternal stressMitochondrial biogenesisREDD1 |
英文关键词 | Biosynthesis; Hormones; Mammals; Mitochondria; Obstetrics; Plants (botany); Proteins; Adipocyte differentiation; Cyclic adenosine monophosphate (cAMP); Element-binding proteins; Inhibitory effect; Metabolic disease; Mitochondrial biogenesis; Regulatory elements; Thermogenic activity; Metabolism |
语种 | 英语 |
来源期刊 | Science Bulletin |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/207368 |
作者单位 | Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; School of Food Sciences, Washington State University, Pullman, WA 99164, United States |
推荐引用方式 GB/T 7714 | Chen Y.-T.,Hu Y.,Yang Q.-Y.,et al. Embryonic exposure to hyper glucocorticoids suppresses brown fat development and thermogenesis via REDD1[J],2021,66(5). |
APA | Chen Y.-T..,Hu Y..,Yang Q.-Y..,Liu X.-D..,Son J.S..,...&Du M..(2021).Embryonic exposure to hyper glucocorticoids suppresses brown fat development and thermogenesis via REDD1.Science Bulletin,66(5). |
MLA | Chen Y.-T.,et al."Embryonic exposure to hyper glucocorticoids suppresses brown fat development and thermogenesis via REDD1".Science Bulletin 66.5(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。