Climate Change Data Portal
DOI | 10.1016/j.scib.2020.02.003 |
In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting | |
Zhang S.; Gao G.; Zhu H.; Cai L.; Jiang X.; Lu S.; Duan F.; Dong W.; Chai Y.; Du M. | |
发表日期 | 2020 |
ISSN | 20959273 |
起始页码 | 640 |
结束页码 | 650 |
卷号 | 65期号:8 |
英文摘要 | Regulating chemical bonds to balance the adsorption and disassociation of water molecules on catalyst surfaces is crucial for overall water splitting in alkaline solution. Here we report a facile strategy for designing Ni2W4C-W3C Janus structures with abundant Ni–W metallic bonds on surfaces through interfacial engineering. Inserting Ni atoms into the W3C crystals in reaction progress generates a new Ni2W4C phase, making the inert W atoms in W3C be active sites in Ni2W4C for overall water splitting. The Ni2W4C-W3C/carbon nanofibers (Ni2W4C-W3C/CNFs) require overpotentials of 63 mV to reach 10 mA cm−2 for hydrogen evolution reaction (HER) and 270 mV to reach 30 mA cm−2 for oxygen evolution reaction (OER) in alkaline electrolyte, respectively. When utilized as both cathode and anode in alkaline solution for overall water splitting, cell voltages of 1.55 and 1.87 V are needed to reach 10 and 100 mA cm−2, respectively. Density functional theory (DFT) results indicate that the strong interactions between Ni and W increase the local electronic states of W atoms. The Ni2W4C provides active sites for cleaving H–OH bonds, and the W3C facilitates the combination of Hads intermediates into H2 molecules. The in situ electrochemical-Raman results demonstrate that the strong absorption ability for hydroxyl and water molecules and further demonstrate that W atoms are the real active sites. © 2020 Science China Press |
关键词 | Interfacial engineeringJanus structureNickel tungsten carbideWater splitting |
英文关键词 | Alkalinity; Atoms; Bond strength (chemical); Density functional theory; Electrodes; Electrolytes; Electronic states; Hydrogen evolution reaction; Molecules; Oxygen evolution reaction; Tungsten carbide; Water absorption; Alkaline electrolytes; Alkaline solutions; Catalyst surfaces; Nickel-tungsten; Oxygen evolution reaction (oer); Strong absorptions; Strong interaction; Water splitting; Nickel compounds |
语种 | 英语 |
来源期刊 | Science Bulletin |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/207297 |
作者单位 | Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China; Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, 200092, China; Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, Hong Kong |
推荐引用方式 GB/T 7714 | Zhang S.,Gao G.,Zhu H.,et al. In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting[J],2020,65(8). |
APA | Zhang S..,Gao G..,Zhu H..,Cai L..,Jiang X..,...&Du M..(2020).In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting.Science Bulletin,65(8). |
MLA | Zhang S.,et al."In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting".Science Bulletin 65.8(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang S.]的文章 |
[Gao G.]的文章 |
[Zhu H.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang S.]的文章 |
[Gao G.]的文章 |
[Zhu H.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang S.]的文章 |
[Gao G.]的文章 |
[Zhu H.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。