CCPortal
DOI10.1038/s41561-020-0582-5
Artificial intelligence reconstructs missing climate information
Kadow C.; Hall D.M.; Ulbrich U.
发表日期2020
ISSN17520894
起始页码408
结束页码413
卷号13期号:6
英文摘要Historical temperature measurements are the basis of global climate datasets like HadCRUT4. This dataset contains many missing values, particularly for periods before the mid-twentieth century, although recent years are also incomplete. Here we demonstrate that artificial intelligence can skilfully fill these observational gaps when combined with numerical climate model data. We show that recently developed image inpainting techniques perform accurate monthly reconstructions via transfer learning using either 20CR (Twentieth-Century Reanalysis) or the CMIP5 (Coupled Model Intercomparison Project Phase 5) experiments. The resulting global annual mean temperature time series exhibit high Pearson correlation coefficients (≥0.9941) and low root mean squared errors (≤0.0547 °C) as compared with the original data. These techniques also provide advantages relative to state-of-the-art kriging interpolation and principal component analysis-based infilling. When applied to HadCRUT4, our method restores a missing spatial pattern of the documented El Niño from July 1877. With respect to the global mean temperature time series, a HadCRUT4 reconstruction by our method points to a cooler nineteenth century, a less apparent hiatus in the twenty-first century, an even warmer 2016 being the warmest year on record and a stronger global trend between 1850 and 2018 relative to previous estimates. We propose image inpainting as an approach to reconstruct missing climate information and thereby reduce uncertainties and biases in climate records. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.
英文关键词artificial intelligence; climate conditions; climate modeling; CMIP; global climate; nineteenth century; paleoclimate; paleotemperature; reconstruction
语种英语
来源期刊Nature Geoscience
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/206797
作者单位German Climate Computing Center (DKRZ), Hamburg, Germany; Institute of Meteorology, Freie Universität Berlin, Berlin, Germany; NVIDIA, Santa Clara, CA, United States
推荐引用方式
GB/T 7714
Kadow C.,Hall D.M.,Ulbrich U.. Artificial intelligence reconstructs missing climate information[J],2020,13(6).
APA Kadow C.,Hall D.M.,&Ulbrich U..(2020).Artificial intelligence reconstructs missing climate information.Nature Geoscience,13(6).
MLA Kadow C.,et al."Artificial intelligence reconstructs missing climate information".Nature Geoscience 13.6(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kadow C.]的文章
[Hall D.M.]的文章
[Ulbrich U.]的文章
百度学术
百度学术中相似的文章
[Kadow C.]的文章
[Hall D.M.]的文章
[Ulbrich U.]的文章
必应学术
必应学术中相似的文章
[Kadow C.]的文章
[Hall D.M.]的文章
[Ulbrich U.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。