CCPortal
DOI10.1007/s11069-021-04597-w
Predicting tsunami-like solitary wave run-up over fringing reefs using the multi-layer perceptron neural network
Yao Y.; Yang X.; Lai S.H.; Chin R.J.
发表日期2021
ISSN0921030X
起始页码601
结束页码616
卷号107期号:1
英文摘要Modeling of tsunami wave interaction with coral reefs to date focuses mainly on the process-based numerical models. In this study, an alternative machine learning technique based on the multi-layer perceptron neural network (MLP-NN) is introduced to predict the tsunami-like solitary wave run-up over fringing reefs. Two hydrodynamic forcings (incident wave height, reef-flat water level) and four reef morphologic features (reef width, fore-reef slope, beach slope, reef roughness) are selected as the input variables and wave run-up on the back-reef beach is assigned as the output variable. A validated numerical model based on the Boussinesq equations is applied to provide a dataset consisting of 4096 runs for MLP-NN training and testing. Results analyses show that the MLP-NN consisting of one hidden layer with ten hidden neurons provides the best predictions for the wave run-up. Subsequently, model performances in view of individual input variables are accessed via an analysis of the percentage errors of the predictions. Finally, a mean impact value analysis is also conducted to evaluate the relative importance of the input variables to the output variable. In general, the adopted MLP-NN has high predictive capability for wave run-up over the reef-lined coasts, and it is an alternative but more efficient tool for potential use in tsunami early warning system or risk assessment projects. © 2021, The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature.
关键词Artificial neural networkCoral reefsolitary waveTsunami hazardWave run-up
英文关键词artificial neural network; Boussinesq equation; coastal zone; coral reef; early warning system; fringing reef; hydrodynamic force; machine learning; nearshore dynamics; prediction; risk assessment; solitary wave; tsunami; wave height; wave runup
语种英语
来源期刊Natural Hazards
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/206689
作者单位School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China; Department of Civil Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, Kuala Lumpur, 50603, Malaysia; Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor 43000, Malaysia; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, Hunan 410114, China
推荐引用方式
GB/T 7714
Yao Y.,Yang X.,Lai S.H.,et al. Predicting tsunami-like solitary wave run-up over fringing reefs using the multi-layer perceptron neural network[J],2021,107(1).
APA Yao Y.,Yang X.,Lai S.H.,&Chin R.J..(2021).Predicting tsunami-like solitary wave run-up over fringing reefs using the multi-layer perceptron neural network.Natural Hazards,107(1).
MLA Yao Y.,et al."Predicting tsunami-like solitary wave run-up over fringing reefs using the multi-layer perceptron neural network".Natural Hazards 107.1(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yao Y.]的文章
[Yang X.]的文章
[Lai S.H.]的文章
百度学术
百度学术中相似的文章
[Yao Y.]的文章
[Yang X.]的文章
[Lai S.H.]的文章
必应学术
必应学术中相似的文章
[Yao Y.]的文章
[Yang X.]的文章
[Lai S.H.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。