Climate Change Data Portal
DOI | 10.1007/s11069-020-04223-1 |
The lower ionosphere disturbances observed during the chain of the meteotsunamis in the Mediterranean Sea in June 2014 | |
Solovieva M.; Rozhnoi A.; Shalimov S.; Shevchenko G.; Biagi P.F.; Fedun V. | |
发表日期 | 2021 |
ISSN | 0921030X |
起始页码 | 1383 |
结束页码 | 1396 |
卷号 | 106期号:2 |
英文摘要 | In June 2014, a number of meteotsunamis were detected in the Mediterranean and Black Sea area. These meteotsunamis were initiated by a unique high-altitude dynamical system which was initially originated above Spain and traveled across the Mediterranean Sea towards Black Sea and Turkey. Meteotsunamis unlike tsunamis driven by strong earthquakes are local events, and their formation has different mechanism. Atmospheric internal gravity waves (IGWs) are one of the main known sources of meteotsunamis (e.g. Vilibić et al. in Pure Appl Geophys 165:2169–2195, 2008). The synoptic system produced short-lived and small-scale atmospheric pressure perturbations which drifted with the jet stream-like bubbles and generated tsunami-like waves in the open waters. The bubbles with typical dimensions 15–60 km continuously form and collapse in the atmosphere at altitudes of 3–6 km. Such a “boiled” atmosphere generated IGWs propagating both downward, where they produced meteotsunamis (presumably under Proudman resonance condition) and upward into the ionosphere, with following dissipation and excitation of plasma density perturbations. One of the few experimental techniques, which can monitor perturbations of the ionization within the lower ionosphere, uses long-wave probing by very low and low frequency (VLF/LF) radio signals. To study the ionospheric disturbances observed during the chain of meteotsunamis affecting the Mediterranean Sea, we used VLF/LF data collected in South Europe by “The International Network for Frontier Research on Earthquake Precursors”. By applying the spectral analysis method to the anomalous VLF/LF signals, it was found that revealed periods of the signal variations were from 10 to 40–70 min in different stations, which are in the range of the atmospheric pressure oscillations and the meteotsunami events. These periods also correspond to the periods of IGWs. © 2020, Springer Nature B.V. |
关键词 | Lower ionospheric disturbancesMeteotsunamiRadio wave propagation |
英文关键词 | atmospheric pressure; gravity wave; ionosphere; signal processing; tsunami event; wave propagation; Europe; Mediterranean Sea; Meleagris gallopavo; Varanidae |
语种 | 英语 |
来源期刊 | Natural Hazards |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/206576 |
作者单位 | Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russian Federation; Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation; Institute of Marine Geology and Geophysics FEB RAS, Yuzhno-Sakhalinsk, Russian Federation; Department of Physics, University of Bari, Bari, Italy; Inter-Department Centre for the Evaluation and Mitigation of the Volcanic and Seismic Risk, University of Bari, Bari, Italy; Space Systems Laboratory, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom |
推荐引用方式 GB/T 7714 | Solovieva M.,Rozhnoi A.,Shalimov S.,et al. The lower ionosphere disturbances observed during the chain of the meteotsunamis in the Mediterranean Sea in June 2014[J],2021,106(2). |
APA | Solovieva M.,Rozhnoi A.,Shalimov S.,Shevchenko G.,Biagi P.F.,&Fedun V..(2021).The lower ionosphere disturbances observed during the chain of the meteotsunamis in the Mediterranean Sea in June 2014.Natural Hazards,106(2). |
MLA | Solovieva M.,et al."The lower ionosphere disturbances observed during the chain of the meteotsunamis in the Mediterranean Sea in June 2014".Natural Hazards 106.2(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。