CCPortal
DOI10.1007/s11069-021-04754-1
Study of landslide geological hazard prediction method based on probability migration
Jiang S.
发表日期2021
ISSN0921030X
起始页码1753
结束页码1762
卷号108期号:2
英文摘要Based on construction of landslide displacement field detection system in Heifangtai (Lanzhou, China), landslide geological hazard prediction method based on probability migration is proposed and verified in this paper. In the hardware of landslide displacement field detection system, there are five diction points which contain 15 fiber Bragg grating (FBG) displacement sensors, and the data of detection point 1 m1 m2 and m3 are chosen as sample to complete data analyses. After data analyses, the future trend state of m1 is ‘S’ due to that state transition probability Pm111 > Pm113 > Pm112, m2 is ‘S’ due to that Pm211 > Pm212 > Pm213, and m3 is ‘S’ due to that Pm311 > Pm312 = Pm313. The future trend state prediction is highly consistent with the actual measured data and field observation results. These results of data analyses show that the proposed prediction method in this paper can realize effective prediction of landslide state and has important practical value for landslide prediction. © 2021, The Author(s), under exclusive licence to Springer Nature B.V.
关键词FBGField detection systemLandslideProbability migrationState prediction
语种英语
来源期刊Natural Hazards
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/206308
作者单位School of Electrical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
推荐引用方式
GB/T 7714
Jiang S.. Study of landslide geological hazard prediction method based on probability migration[J],2021,108(2).
APA Jiang S..(2021).Study of landslide geological hazard prediction method based on probability migration.Natural Hazards,108(2).
MLA Jiang S.."Study of landslide geological hazard prediction method based on probability migration".Natural Hazards 108.2(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang S.]的文章
百度学术
百度学术中相似的文章
[Jiang S.]的文章
必应学术
必应学术中相似的文章
[Jiang S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。