Climate Change Data Portal
DOI | 10.1007/s11069-021-04535-w |
Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy | |
Cian F.; Giupponi C.; Marconcini M. | |
发表日期 | 2021 |
ISSN | 0921030X |
起始页码 | 2163 |
结束页码 | 2184 |
卷号 | 106期号:3 |
英文摘要 | Climate sciences foresee a future where extreme weather events could happen with increased frequency and strength, which would in turn increase risks of floods (i.e. the main source of losses in the world). The Mediterranean basin is considered a hot spot in terms of climate vulnerability and risk. The expected impacts of those events are exacerbated by land-use change and, in particular, by urban growth which increases soil sealing and, hence, water runoff. The ultimate consequence would be an increase of fatalities and injuries, but also of economic losses in urban areas, commercial and productive sites, infrastructures and agriculture. Flood damages have different magnitudes depending on the economic value of the exposed assets and on level of physical contact with the hazard. This work aims at proposing a methodology, easily customizable by experts’ elicitation, able to quantify and map the social component of vulnerability through the integration of earth observation (EO) and census data with the aim of allowing for a multi-temporal spatial assessment. Firstly, data on employment, properties and education are used for assessing the adaptive capacity of the society to increase resilience to adverse events, whereas, secondly, coping capacity, i.e. the capacities to deal with events during their manifestation, is mapped by aggregating demographic and socio-economic data, urban growth analysis and memory on past events. Thirdly, the physical dimension of exposed assets (susceptibility) is assessed by combining building properties acquired by census data and land-surface characteristics derived from EO data. Finally, the three components (i.e. adaptive and coping capacity and susceptibility) are aggregated for calculating the dynamic flood vulnerability index (FVI). The approach has been applied to Northeast Italy, a region frequently hit by floods, which has experienced a significant urban and economic development in the past decades, thus making the dynamic study of FVI particularly relevant. The analysis has been carried out from 1991 to 2016 at a 5-year steps, showing how the integration of different data sources allows to produce a dynamic assessment of vulnerability, which can be very relevant for planning in support of climate change adaptation and disaster risk reduction. © 2021, The Author(s). |
关键词 | Census dataEarth observationFloodMemory effectMulti-criteria analysisVulnerability index |
英文关键词 | census; flood; mapping; multicriteria analysis; quantitative analysis; temporal analysis; vulnerability; Italy |
语种 | 英语 |
来源期刊 | Natural Hazards |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/206165 |
作者单位 | Department of Economics, Ca’ Foscari University Venice, Fondamenta San Giobbe 873, Venice, 30121, Italy; German Aerospace Center–DLR, Muenchener Str. 20, Wessling, 82234, Germany |
推荐引用方式 GB/T 7714 | Cian F.,Giupponi C.,Marconcini M.. Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy[J],2021,106(3). |
APA | Cian F.,Giupponi C.,&Marconcini M..(2021).Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy.Natural Hazards,106(3). |
MLA | Cian F.,et al."Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy".Natural Hazards 106.3(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。