Climate Change Data Portal
DOI | 10.1007/s11069-020-03913-0 |
Rainfall-Induced Landslides forecast using local precipitation and global climate indexes | |
Fustos I.; Abarca-del-Rio R.; Moreno-Yaeger P.; Somos-Valenzuela M. | |
发表日期 | 2020 |
ISSN | 0921030X |
起始页码 | 115 |
结束页码 | 131 |
卷号 | 102期号:1 |
英文摘要 | We analyse RIL events between 1950 and 2002 to investigate the role played by climate variability, using the “El Niño-Southern Oscillation” (ENSO), the Antarctic Oscillation (AAO) and local precipitation as predictors, through logistic and probabilistic (Logit and Probit) modelling. From the probabilistic regression analysis, it is clear that rain plays a major role, since its weight in the regression is almost 50%. However, we show that integrating South Pacific climate variability represented by ENSO/AAO significantly increases predictability, reaching over 87%. Moreover, sensitivity and specificity analyses confirm that although local rainfall is the main triggering factor, adding the two macroclimate variables increases the ability to predict true positive and negative occurrences by almost 80%. This confirms the need to integrate macroclimatic variables to make assertive local predictions. Surprisingly, and contrary to what might have been expected considering ENSO's recognized role in regional climate variability, the integration of AAO variability significantly improves RIL prediction capacity, while on average ENSO can be considered a second-order predictor. These results, obtained through a simple logistic regression methodology (Logit and/or Probit), can contribute to better risk management in the middle-latitude zones of Chile. The methodology can be extended to other areas of the world that do not have high-density hydrometeorological information to support preventive decision-making through logistic RIL forecasting. © 2020, Springer Nature B.V. |
关键词 | ENSO-AAO variabilitylogistic regressionRainfall-Induced Landslides |
英文关键词 | air-sea interaction; climate effect; El Nino-Southern Oscillation; forecasting method; global climate; landslide; precipitation (climatology); rainfall; regional climate; regression analysis; Chile; Pacific Ocean; Pacific Ocean (South) |
语种 | 英语 |
来源期刊 | Natural Hazards
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/205698 |
作者单位 | Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Francisco Salazar 01145, Temuco, 4780000, Chile; Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile; Departamento de Ingeniería en Obras Civiles y Geología, Universidad Católica de Temuco, Temuco, Chile; Department of Geoscience, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706, United States; Department of Forest Sciences, Faculty of Agriculture and Forest Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, 4780000, Chile; Butamallin Research Center for Global Change, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, 4780000, Chile |
推荐引用方式 GB/T 7714 | Fustos I.,Abarca-del-Rio R.,Moreno-Yaeger P.,et al. Rainfall-Induced Landslides forecast using local precipitation and global climate indexes[J],2020,102(1). |
APA | Fustos I.,Abarca-del-Rio R.,Moreno-Yaeger P.,&Somos-Valenzuela M..(2020).Rainfall-Induced Landslides forecast using local precipitation and global climate indexes.Natural Hazards,102(1). |
MLA | Fustos I.,et al."Rainfall-Induced Landslides forecast using local precipitation and global climate indexes".Natural Hazards 102.1(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。