CCPortal
DOI10.1007/s11069-020-04178-3
Predicting site-specific storm wave run-up
Fiedler J.W.; Young A.P.; Ludka B.C.; O’Reilly W.C.; Henderson C.; Merrifield M.A.; Guza R.T.
发表日期2020
ISSN0921030X
起始页码493
结束页码517
卷号104期号:1
英文摘要Storm wave run-up causes beach erosion, wave overtopping, and street flooding. Extreme runup estimates may be improved, relative to predictions from general empirical formulae with default parameter values, by using historical storm waves and eroded profiles in numerical runup simulations. A climatology of storm wave run-up at Imperial Beach, California is developed using the numerical model SWASH, and over a decade of hindcast spectral waves and observed depth profiles. For use in a local flood warning system, the relationship between incident wave energy spectra E(f) and SWASH-modeled shoreline water levels is approximated with the numerically simple integrated power law approximation (IPA). Broad and multi-peaked E(f) are accommodated by characterizing wave forcing with frequency-weighted integrals of E(f). This integral approach improves runup estimates compared to the more commonly used bulk parameterization using deep water wave height H and deep water wavelength L Hunt (Trans Am Soc Civ Eng 126(4):542–570, 1961) and Stockdon et al. (Coast Eng 53(7):573–588, 2006. https://doi.org/10.1016/j.coastaleng.2005.12.005). Scaling of energy and frequency contributions in IPA, determined by searching parameter space for the best fit to SWASH, show an HL scaling is near optimal. IPA performance is tested with LiDAR observations of storm run-up, which reached 2.5 m above the offshore water level, overtopped backshore riprap, and eroded the foreshore beach slope. Driven with estimates from a regional wave model and observed βf, the IPA reproduced observed run-up with < 30 % error. However, errors in model physics, depth profile, and incoming wave predictions partially cancelled. IPA (or alternative empirical forms) can be calibrated (using SWASH or similar) for sites where historical waves and eroded bathymetry are available. © 2020, The Author(s).
关键词Boundary conditionsExtreme eventsLiDARNumerical modelingSWASHWave run-up
英文关键词boundary condition; climatology; extreme event; hindcasting; lidar; numerical model; prediction; storm; water level; wave force; wave height; wave modeling; wave runup; California; Imperial Beach; United States
语种英语
来源期刊Natural Hazards
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/205692
作者单位Scripps Institution of Oceanography, La Jolla, CA, United States
推荐引用方式
GB/T 7714
Fiedler J.W.,Young A.P.,Ludka B.C.,et al. Predicting site-specific storm wave run-up[J],2020,104(1).
APA Fiedler J.W..,Young A.P..,Ludka B.C..,O’Reilly W.C..,Henderson C..,...&Guza R.T..(2020).Predicting site-specific storm wave run-up.Natural Hazards,104(1).
MLA Fiedler J.W.,et al."Predicting site-specific storm wave run-up".Natural Hazards 104.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fiedler J.W.]的文章
[Young A.P.]的文章
[Ludka B.C.]的文章
百度学术
百度学术中相似的文章
[Fiedler J.W.]的文章
[Young A.P.]的文章
[Ludka B.C.]的文章
必应学术
必应学术中相似的文章
[Fiedler J.W.]的文章
[Young A.P.]的文章
[Ludka B.C.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。