CCPortal
DOI10.1007/s11069-020-04089-3
Multi-objective feature selection (MOFS) algorithms for prediction of liquefaction susceptibility of soil based on in situ test methods
Das S.K.; Mohanty R.; Mohanty M.; Mahamaya M.
发表日期2020
ISSN0921030X
起始页码2371
结束页码2393
卷号103期号:2
英文摘要The prediction of liquefaction susceptibility for highly unbalanced database with limited and important input parameters is a crucial issue. The proposed multi-objective feature selection algorithms (MOFS) were applied to highly unbalanced databases of in situ tests: standard penetration test (SPT), cone penetration test (CPT) and shear wave velocity (Vs) test.Two multi-objective algorithms, non-dominated sorting genetic algorithm (NSGA-II) and multi-objective symbiotic organisms search algorithm (MOSOS), were coupled with learning algorithms, artificial neural network (ANN) and multivariate adaptive regression spline (MARS) separately to effectively select the optimal parameters and simultaneously minimize the error. The obtained optimal point has approximately equal accuracy in both liquefiable and non-liquefiable conditions for training and testing. The important inputs found for models based on SPT are: (N1)60, amax and Mw; CPT: qc1, amax and CSR and Vs: Vs1, CSR, amax and Mw. The CPT-based models were found to be the most efficient. © 2020, Springer Nature B.V.
关键词ANNFeature selectionIn situ testsLiquefactionMARSMOSOSMulti-objective optimizationNSGA-II
英文关键词algorithm; artificial neural network; computer simulation; earthquake prediction; in situ test; liquefaction; parameter estimation; regression analysis; S-wave; seismic velocity
语种英语
来源期刊Natural Hazards
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/205652
作者单位Department of Civil Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India; Department of Civil Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
推荐引用方式
GB/T 7714
Das S.K.,Mohanty R.,Mohanty M.,et al. Multi-objective feature selection (MOFS) algorithms for prediction of liquefaction susceptibility of soil based on in situ test methods[J],2020,103(2).
APA Das S.K.,Mohanty R.,Mohanty M.,&Mahamaya M..(2020).Multi-objective feature selection (MOFS) algorithms for prediction of liquefaction susceptibility of soil based on in situ test methods.Natural Hazards,103(2).
MLA Das S.K.,et al."Multi-objective feature selection (MOFS) algorithms for prediction of liquefaction susceptibility of soil based on in situ test methods".Natural Hazards 103.2(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Das S.K.]的文章
[Mohanty R.]的文章
[Mohanty M.]的文章
百度学术
百度学术中相似的文章
[Das S.K.]的文章
[Mohanty R.]的文章
[Mohanty M.]的文章
必应学术
必应学术中相似的文章
[Das S.K.]的文章
[Mohanty R.]的文章
[Mohanty M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。