CCPortal
DOI10.1111/ele.13728
Towards robust statistical inference for complex computer models
Oberpriller J.; Cameron D.R.; Dietze M.C.; Hartig F.
发表日期2021
ISSN1461023X
起始页码1251
结束页码1261
卷号24期号:6
英文摘要Ecologists increasingly rely on complex computer simulations to forecast ecological systems. To make such forecasts precise, uncertainties in model parameters and structure must be reduced and correctly propagated to model outputs. Naively using standard statistical techniques for this task, however, can lead to bias and underestimation of uncertainties in parameters and predictions. Here, we explain why these problems occur and propose a framework for robust inference with complex computer simulations. After having identified that model error is more consequential in complex computer simulations, due to their more pronounced nonlinearity and interconnectedness, we discuss as possible solutions data rebalancing and adding bias corrections on model outputs or processes during or after the calibration procedure. We illustrate the methods in a case study, using a dynamic vegetation model. We conclude that developing better methods for robust inference of complex computer simulations is vital for generating reliable predictions of ecosystem responses. © 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.
关键词Bayesian Inferencebias correctionbiased modelsdata imbalancerobust inference
英文关键词calibration; complexity; computer simulation; correction; ecosystem response; nonlinearity; precision; uncertainty analysis; Bayes theorem; computer simulation; ecosystem; forecasting; statistical model; uncertainty; Bayes Theorem; Computer Simulation; Ecosystem; Forecasting; Models, Statistical; Uncertainty
语种英语
来源期刊Ecology Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/204462
作者单位Theoretical Ecology, University of Regensburg, Universitätsstraße 31, Regensburg, 93053, Germany; UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH260QB, United Kingdom; Department of Earth & Environment, Boston University, Boston, MA, United States
推荐引用方式
GB/T 7714
Oberpriller J.,Cameron D.R.,Dietze M.C.,et al. Towards robust statistical inference for complex computer models[J],2021,24(6).
APA Oberpriller J.,Cameron D.R.,Dietze M.C.,&Hartig F..(2021).Towards robust statistical inference for complex computer models.Ecology Letters,24(6).
MLA Oberpriller J.,et al."Towards robust statistical inference for complex computer models".Ecology Letters 24.6(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Oberpriller J.]的文章
[Cameron D.R.]的文章
[Dietze M.C.]的文章
百度学术
百度学术中相似的文章
[Oberpriller J.]的文章
[Cameron D.R.]的文章
[Dietze M.C.]的文章
必应学术
必应学术中相似的文章
[Oberpriller J.]的文章
[Cameron D.R.]的文章
[Dietze M.C.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。