CCPortal
DOI10.1111/ele.13610
Uncovering ecological state dynamics with hidden Markov models
McClintock B.T.; Langrock R.; Gimenez O.; Cam E.; Borchers D.L.; Glennie R.; Patterson T.A.
发表日期2020
ISSN1461023X
起始页码1878
结束页码1903
卷号23期号:12
英文摘要Ecological systems can often be characterised by changes among a finite set of underlying states pertaining to individuals, populations, communities or entire ecosystems through time. Owing to the inherent difficulty of empirical field studies, ecological state dynamics operating at any level of this hierarchy can often be unobservable or ‘hidden’. Ecologists must therefore often contend with incomplete or indirect observations that are somehow related to these underlying processes. By formally disentangling state and observation processes based on simple yet powerful mathematical properties that can be used to describe many ecological phenomena, hidden Markov models (HMMs) can facilitate inferences about complex system state dynamics that might otherwise be intractable. However, HMMs have only recently begun to gain traction within the broader ecological community. We provide a gentle introduction to HMMs, establish some common terminology, review the immense scope of HMMs for applied ecological research and provide a tutorial on implementation and interpretation. By illustrating how practitioners can use a simple conceptual template to customise HMMs for their specific systems of interest, revealing methodological links between existing applications, and highlighting some practical considerations and limitations of these approaches, our goal is to help establish HMMs as a fundamental inferential tool for ecologists. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Ecology Letters published by John Wiley & Sons Ltd.
关键词Behavioural ecologycommunity ecologyecosystem ecologyhierarchical modelmovement ecologyobservation errorpopulation ecologystate-space modeltime series
英文关键词ecological approach; empirical analysis; numerical model; terminology; ecology; ecosystem; human; Markov chain; Ecology; Ecosystem; Humans; Markov Chains
语种英语
来源期刊Ecology Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/204257
作者单位NOAA National Marine Fisheries Service, Seattle, WA, United States; Department of Business Administration and Economics, Bielefeld University, Bielefeld, Germany; CNRS Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France; Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, Univ. Brest, CNRS, IRD, Ifremer, France; School of Mathematics and Statistics, University of St Andrews, St Andrews, United Kingdom; CSIRO Oceans and Atmosphere, Hobart, Australia
推荐引用方式
GB/T 7714
McClintock B.T.,Langrock R.,Gimenez O.,et al. Uncovering ecological state dynamics with hidden Markov models[J],2020,23(12).
APA McClintock B.T..,Langrock R..,Gimenez O..,Cam E..,Borchers D.L..,...&Patterson T.A..(2020).Uncovering ecological state dynamics with hidden Markov models.Ecology Letters,23(12).
MLA McClintock B.T.,et al."Uncovering ecological state dynamics with hidden Markov models".Ecology Letters 23.12(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[McClintock B.T.]的文章
[Langrock R.]的文章
[Gimenez O.]的文章
百度学术
百度学术中相似的文章
[McClintock B.T.]的文章
[Langrock R.]的文章
[Gimenez O.]的文章
必应学术
必应学术中相似的文章
[McClintock B.T.]的文章
[Langrock R.]的文章
[Gimenez O.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。