Climate Change Data Portal
DOI | 10.1016/j.earscirev.2019.02.014 |
The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria | |
Zhang L.; Orchard M.J.; Brayard A.; Algeo T.J.; Zhao L.; Chen Z.-Q.; Lyu Z. | |
发表日期 | 2019 |
ISSN | 00128252 |
起始页码 | 7 |
结束页码 | 36 |
卷号 | 195 |
英文摘要 | The transition from the Smithian substage to the Spathian substage of the Olenekian stage of the late Early Triassic was a critical time marked by a series of biological and environmental changes during the multimillion-year recovery interval following the end-Permian mass extinction. However, the Smithian/Spathian boundary (SSB) does not yet have an agreed definition, a shortcoming that complicates high-resolution analysis of events during the Smithian-Spathian transition. Here, we review key biostratigraphic (i.e., ammonoid and conodont) studies of the Smithian and Spathian substages in historically important regions (e.g., the Canadian Arctic for the Boreal realm, western North America for the eastern Panthalassic Ocean) and more recently re-studied locations (e.g., Pakistan and India in the southern Tethys, South China in the eastern Tethys) as well as the carbon isotope chemostratigraphy of 29 major Smithian-Spathian sections globally. Key ammonoid genera (e.g., Wasatchites, Anasibirites, Glyptophiceras and Xenoceltites of the late Smithian, and Bajarunia, Tirolites and Columbites of the early Spathian), conodont species (e.g., Scythogondolella milleri, Novispathodus waageni, and Borinella buurensis of the late Smithian, and ‘Triassospathodus’ hungaricus, Neogondolella aff. sweeti, and Icriospathodus spp. of the early Spathian), and carbonate carbon isotope excursions provide appropriate markers for constraining the SSB. Use of the first occurrence of the conodont Novispathodus pingdingshanensis as a potential marker of the SSB is also discussed. Based on correlations of biostratigraphic and carbon isotope data globally, we propose to revise previous placements of the SSB transition in some sections. Finally, we show that the Smithian Thermal Maximum (STM; herein named) was middle Smithian in age and not correlative with the SSB, as inferred in some earlier studies, and that the SSB coincided with a subsequent major global cooling event. © 2019 Elsevier B.V. |
关键词 | BorealCarbon isotopesHyperwarmingOlenekianSmithian Thermal MaximumTethyan |
英文关键词 | ammonite; biostratigraphy; carbon isotope; chemostratigraphy; conodont; environmental change; mass extinction; paleoenvironment; Permian-Triassic boundary; Canada; Canadian Arctic; China; India; North America; Pakistan; Ammonoidea; Neogondolella |
语种 | 英语 |
来源期刊 | Earth Science Reviews |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/203612 |
作者单位 | State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China; Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, United States; Geological Survey of Canada, 1500-605 Robson St., Vancouver, B.C. V6B 5J3, Canada; Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, 21000, France; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China |
推荐引用方式 GB/T 7714 | Zhang L.,Orchard M.J.,Brayard A.,et al. The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria[J],2019,195. |
APA | Zhang L..,Orchard M.J..,Brayard A..,Algeo T.J..,Zhao L..,...&Lyu Z..(2019).The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria.Earth Science Reviews,195. |
MLA | Zhang L.,et al."The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria".Earth Science Reviews 195(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。