Climate Change Data Portal
DOI | 10.1016/j.earscirev.2019.03.008 |
Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating | |
Li Z.; Cao Y.; Wei J.; Duan M.; Wu L.; Hou J.; Zhu J. | |
发表日期 | 2019 |
ISSN | 00128252 |
起始页码 | 258 |
结束页码 | 284 |
卷号 | 192 |
英文摘要 | Spatial heterogeneity in the atmospheric refractive index causes variations in spaceborne interferometric synthetic aperture radar (InSAR) observations. The neutral atmospheric delay (i.e., the tropospheric delay) on one hand, can introduce large errors in the InSAR-derived displacements associated with earthquakes, volcanic activity, glacier motions, underground resource extraction, and many other crustal deformation phenomena. On the other hand, the tropospheric delay can be used to infer high-resolution maps of the non-differential atmospheric water vapor. Time-series InSAR techniques aim to measure geodetic and/or geophysical parameters of interest by integrating time series of SAR images or interferograms using statistical or adjustment methods, through the reduction of error sources (e.g., atmospheric delays, decorrelation noises). This contribution is intended to systematically review the properties, mitigation, and estimation of the atmospheric delays in TS-InSAR for better monitoring ground deformation. We first review the present TS-InSAR techniques and introduce the spatio-temporal characteristics of the neutral atmospheric delays observed in TS-InSAR. We then present the estimates and integration of atmospheric stochastic models for TS-InSAR applications. We construct, analyze, and illustrate a high-resolution non-differential atmospheric water vapor model from TS-InSAR observations. Finally, we present a discussion and outlook for the TS-InSAR atmospheric delay models and estimation efforts. © 2019 Elsevier B.V. |
关键词 | Atmospheric delayAtmospheric water vaporInterferometric Synthetic Aperture Radar (InSAR)Stochastic modelTime-series InSAR (TS-InSAR) |
英文关键词 | atmospheric modeling; deformation; displacement; estimation method; monitoring; stochasticity; synthetic aperture radar; time series; water vapor |
语种 | 英语 |
来源期刊 | Earth Science Reviews
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/203479 |
作者单位 | School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China |
推荐引用方式 GB/T 7714 | Li Z.,Cao Y.,Wei J.,et al. Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating[J],2019,192. |
APA | Li Z..,Cao Y..,Wei J..,Duan M..,Wu L..,...&Zhu J..(2019).Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating.Earth Science Reviews,192. |
MLA | Li Z.,et al."Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating".Earth Science Reviews 192(2019). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li Z.]的文章 |
[Cao Y.]的文章 |
[Wei J.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li Z.]的文章 |
[Cao Y.]的文章 |
[Wei J.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li Z.]的文章 |
[Cao Y.]的文章 |
[Wei J.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。