Climate Change Data Portal
DOI | 10.1016/j.earscirev.2019.01.014 |
Detrital zircon provenance of Permo-Carboniferous glacial diamictites across Gondwana | |
Craddock J.P.; Ojakangas R.W.; Malone D.H.; Konstantinou A.; Mory A.; Bauer W.; Thomas R.J.; Affinati S.C.; Pauls K.; Zimmerman U.; Botha G.; Rochas-Campos A.; Santos P.R.D.; Tohver E.; Riccomini C.; Martin J.; Redfern J.; Horstwood M.; Gehrels G. | |
发表日期 | 2019 |
ISSN | 00128252 |
起始页码 | 285 |
结束页码 | 316 |
卷号 | 192 |
英文摘要 | Gondwana changed its high latitude location during the late Paleozoic (338–265 Ma), relative to the South Pole, and the style of glaciation evolved from localized alpine glaciers and ice fields to ~30 small ice sheets across the supercontinent. We report the analysis of heavy mineral populations (n = 2217) and the ages of detrital zircons (n = 2920 U-Pb LA-ICPMS results) from Gondwana diamictite deposits from eight landmasses: Africa (5 samples), Antarctica (5), Australia (8), the Ellsworth Mountains terrane (1, Antarctica), the Falkland Islands (2, diamictite plus U-Pb SHRIMP ages on granite clasts), India (1), Madagascar (1), Oman (3), the equatorial Lhasa terrane (2), the equatorial North Qiantang terrane (2) and South America (10). Heavy mineral separations (SEM-WDS analysis) identified one anomaly, pyrope garnets present only in Dwyka Group and Dwyka-equivalent samples suggesting an ultramafic Antarctic source. Statistical analysis of detrital zircon age distributions support the inference of local transport of sediment from many small ice centers with five examples of far-field ice transport (>1000 km; four with ice flow >2000 km), and three from ice fields located along coastal Antarctica. We propose that ice was distributed from five main ice-caps of different ages in southern Gondwana with ice flow away from central Gondwana. We also confirm that the Permo-Carboniferous detrital zircon populations of Euramerica (eolian and fluvial) and Gondwana (ash, detrital-glacial) are not mixed across the equator or seaway and ponder the possibility of a late Paleozoic snowball Earth. © 2019 |
英文关键词 | Carboniferous; detrital deposit; diamictite; Gondwana; provenance; SHRIMP dating; uranium-lead dating; zircon |
语种 | 英语 |
来源期刊 | Earth Science Reviews |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/203410 |
作者单位 | Department of Geology, Macalester College, St. Paul, MN 55105, United States; Department of Geology, University of Minnesota-Duluth, Duluth, MN, United States; Department of Geography, Geology and the Environment, Illinois State University, Normal, IL 61790-4400, United States; ExxonMobil Exploration, Spring, TX 77389, United States; Resources Branch, Industry Regulation and Safety, Government of W. Australia, Mineral House, 100 Plain Street, East, Perth, WA 6004, United States; AGEO Department, German University of Technology in Oman, PO Box 1816, 130 Athaibah, Oman; Council for Geoscience, 3 Oos Street, Bellville, 7535, South Africa; School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, United States; Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States; Department of Petroleum Engineering, University of Stavanger, Ullandhaug, Stavanger, 4036, Norway; Council for Geosciences, Geological Resources Division, ... |
推荐引用方式 GB/T 7714 | Craddock J.P.,Ojakangas R.W.,Malone D.H.,et al. Detrital zircon provenance of Permo-Carboniferous glacial diamictites across Gondwana[J],2019,192. |
APA | Craddock J.P..,Ojakangas R.W..,Malone D.H..,Konstantinou A..,Mory A..,...&Gehrels G..(2019).Detrital zircon provenance of Permo-Carboniferous glacial diamictites across Gondwana.Earth Science Reviews,192. |
MLA | Craddock J.P.,et al."Detrital zircon provenance of Permo-Carboniferous glacial diamictites across Gondwana".Earth Science Reviews 192(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。