CCPortal
DOI10.1016/j.epsl.2021.116960
Recognizing the pathways of microbial methanogenesis through methane isotopologues in the subsurface biosphere
Shuai Y.; Xie H.; Zhang S.; Zhang Y.; Eiler J.M.
发表日期2021
ISSN0012821X
卷号566
英文摘要Microbial methanogenesis is a significant component in the global carbon cycle, a driver of greenhouse warming from atmospheric methane, and contributes to natural gas resources. There are several metabolic pathways of methanogenesis, and it is challenging to discriminate between them and quantify their relative contributions in natural settings. Here we measure and compile four rare isotopologues of methane (13CH4, 12CH3D, 13CH3D and 12CH2D2) from the Qaidam Basin (China) and a large set of previous data across the world to identify distinctive fingerprints of two principal sources of subsurface microbial methane — hydrogenotrophic and methylotrophic methanogenesis — and use those fingerprints to deconvolve the budgets of microbial methane in the Qaidam Basin. Our data show that biogenic methanes in the Qaidam Basin have equilibrium Δ18/Δ13CH3D values respect to reservoir temperature without anaerobic methane oxidation. Our results suggest that methylotrophic methanogenesis produces methane with large deficits in 13CH3D and 12CH2D2 relative to that controlled by homogeneous equilibrium among methane isotopologues at ambient environmental temperatures, whereas hydrogenotrophic methanogenesis produces methane with 13CH3D abundance near equilibrium and relatively subtle 12CH2D2 deficits. We find a good linear correlation between the Δ13CH3D value of natural biogenic methane and independent estimates of the fraction of hydrogenotrophic (methylotrophic) methanogenesis, based on established interpretations of hydrogen isotope data. These findings are consistent with studies of laboratory cultures, which also show methylotrophic methane is more depleted in clumped isotopologues (13CH3D and 12CH2D2) than hydrogenotrophic methane, though both forms of cultured (hydrogenotrophic vs. methylotrophic) methane exhibit strong deficits in both isotopic species. The sensitivity of clumped isotopologues to methanogenesis pathways in natural settings provides a powerful tool for monitoring the activity of methanogenic microbial communities in the subsurface. Anomalies of both studied clumped isotopologues (Δ13CH3D and Δ12CH2D2) decrease over time in wells that have been re-sampled repeatedly, suggesting that such measurements are capable of detecting and quantifying shifts in proportions of these two metabolic pathways over the timescales of gas production history. © 2021 Elsevier B.V.
关键词biogenic methaneclumped isotopologuehydrogenotrophic methanogenesismetabolism pathwayΔ13CH3D proxy
英文关键词Atmospheric chemistry; Budget control; Energy resources; Isotopes; Metabolism; Natural gas; Natural gas deposits; Biogenic methane; Biogenics; Clumped isotopologue; Hydrogenotrophic methanogenesis; Isotopologues; Metabolic pathways; Metabolism pathway; Methanogenesis; Qaidam basin; Δ13CH3D proxy; Methane; biogenic deposit; biosphere; gas production; isotopic analysis; metabolism; methane; methanogenesis; methanogenic bacterium; China; Qaidam Basin; Qinghai
语种英语
来源期刊Earth and Planetary Science Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/203293
作者单位Research Institute of Petroleum Exploration and Development (PetroChina), Beijing, China; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States; Research Institute of Qinghai Oil Field Branch Company (PetroChina), Dunhuang, 736202, China
推荐引用方式
GB/T 7714
Shuai Y.,Xie H.,Zhang S.,et al. Recognizing the pathways of microbial methanogenesis through methane isotopologues in the subsurface biosphere[J],2021,566.
APA Shuai Y.,Xie H.,Zhang S.,Zhang Y.,&Eiler J.M..(2021).Recognizing the pathways of microbial methanogenesis through methane isotopologues in the subsurface biosphere.Earth and Planetary Science Letters,566.
MLA Shuai Y.,et al."Recognizing the pathways of microbial methanogenesis through methane isotopologues in the subsurface biosphere".Earth and Planetary Science Letters 566(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shuai Y.]的文章
[Xie H.]的文章
[Zhang S.]的文章
百度学术
百度学术中相似的文章
[Shuai Y.]的文章
[Xie H.]的文章
[Zhang S.]的文章
必应学术
必应学术中相似的文章
[Shuai Y.]的文章
[Xie H.]的文章
[Zhang S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。