Climate Change Data Portal
DOI | 10.1016/j.epsl.2020.116424 |
Laboratory studies on the 3 μm spectral features of Mg-rich phyllosilicates with temperature variations in support of the interpretation of small asteroid surface spectra | |
Alemanno G.; Maturilli A.; Helbert J.; D'Amore M. | |
发表日期 | 2020 |
ISSN | 0012821X |
卷号 | 546 |
英文摘要 | Recent orbital data revealed the presence of hydrated minerals on the surfaces of asteroids, mainly through the identification and the study of the 3-μm spectral absorption band (Hamilton et al., 2019; Kitazato et al., 2019). The presence of an absorption feature around 3-μm on planetary bodies' surfaces is indicative of the presence of OH-bearing minerals. This band has been widely detected on carbonaceous chondrites but its appearance and its shape are diverse indicating different composition and/or the occurrence of subsequent alteration events. In this work, we present the results of laboratory experiments performed at the Planetary Spectroscopy Laboratory (PSL) of the German Aerospace Center (DLR) to study the spectral behaviour of the 3-μm spectral features in the Mg-OH minerals with thermal variation. It has been suggested that thermal alteration processes, can darken the surfaces of carbonaceous chondrites, thus decreasing the appearance and visibility of the spectral features around 3 μm. Thermal alteration processes are consistent with the scenario currently proposed to explain the formation of 162173 Ryugu asteroid (Sugita et al., 2019). The Near Infrared Spectrometer (NIRS3) on the Hayabusa2 mission detected a weak and narrow absorption feature centred at 2.72 μm across the entire observed surface of the C-type asteroid (Kitazato et al., 2019). However, the collected spectra from the Ryugu surface show no other absorption features in the 3-μm region. To investigate this point further and analyze the variation of the spectral features around 3-μm with thermal alteration, we studied the Mg-rich phyllosilicates serpentine and saponite in two different situations: 1) thermal alteration at increasing temperature - the samples were heated at steps of 100 °C, starting from 100 °C up to 700 °C, for 4 hours each; 2) long time heating at constant temperature - samples were kept constantly at ∼250 °C for 1 month (1st step), then cooled down and measured in reflectance. This long heating process has been repeated at the same temperature of 250 °C for 2 months (2nd step). The results obtained show an important variation of phyllosilicates spectral bands with temperature and provide useful data for the interpretation of past and future mission small bodies collected surface spectra. © 2020 Elsevier B.V. |
关键词 | asteroidsinfrared observationsspectroscopysurfacestemperature |
英文关键词 | Asteroids; Infrared spectrometers; Meteorites; Orbits; Serpentine; Silicates; Temperature; Carbonaceous chondrites; Constant temperature; German aerospace centers; Increasing temperatures; Laboratory experiments; Near infrared spectrometer; Spectral absorptions; Temperature variation; Magnesium compounds; asteroid; carbonaceous chondrite; experimental study; formation mechanism; laboratory method; magnesium; phyllosilicate; temperature effect; thermal alteration |
语种 | 英语 |
来源期刊 | Earth and Planetary Science Letters
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/202468 |
作者单位 | Institute for Planetary Research, German Aerospace Center DLR, Rutherfordstr. 2, Berlin, 12489, Germany |
推荐引用方式 GB/T 7714 | Alemanno G.,Maturilli A.,Helbert J.,et al. Laboratory studies on the 3 μm spectral features of Mg-rich phyllosilicates with temperature variations in support of the interpretation of small asteroid surface spectra[J],2020,546. |
APA | Alemanno G.,Maturilli A.,Helbert J.,&D'Amore M..(2020).Laboratory studies on the 3 μm spectral features of Mg-rich phyllosilicates with temperature variations in support of the interpretation of small asteroid surface spectra.Earth and Planetary Science Letters,546. |
MLA | Alemanno G.,et al."Laboratory studies on the 3 μm spectral features of Mg-rich phyllosilicates with temperature variations in support of the interpretation of small asteroid surface spectra".Earth and Planetary Science Letters 546(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。