Climate Change Data Portal
DOI | 10.5194/tc-15-2835-2021 |
Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning | |
Yin Z.; Li X.; Ge Y.; Shang C.; Li X.; Du Y.; Ling F. | |
发表日期 | 2021 |
ISSN | 19940416 |
起始页码 | 2835 |
结束页码 | 2856 |
卷号 | 15期号:6 |
英文摘要 | The turbulent heat flux (THF) over leads is an important parameter for climate change monitoring in the Arctic region. THF over leads is often calculated from satellite-derived ice surface temperature (IST) products, in which mixed pixels containing both ice and open water along lead boundaries reduce the accuracy of calculated THF. To address this problem, this paper proposes a deep residual convolutional neural network (CNN)-based framework to estimate THF over leads at the subpixel scale (DeepSTHF) based on remotely sensed images. The proposed DeepSTHF provides an IST image and the corresponding lead map with a finer spatial resolution than the input IST image so that the subpixel-scale THF can be estimated from them. The proposed approach is verified using simulated and real Moderate Resolution Imaging Spectroradiometer images and compared with the conventional cubic interpolation and pixel-based methods. The results demonstrate that the proposed CNN-based method can effectively estimate subpixel-scale information from the coarse data and performs well in producing fine-spatial-resolution IST images and lead maps, thereby providing more accurate and reliable THF over leads. © Author(s) 2021. |
语种 | 英语 |
来源期刊 | Cryosphere |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/202454 |
作者单位 | Key Laboratory for Environment and Disaster Monitoring and Evaluation, Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China |
推荐引用方式 GB/T 7714 | Yin Z.,Li X.,Ge Y.,et al. Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning[J],2021,15(6). |
APA | Yin Z..,Li X..,Ge Y..,Shang C..,Li X..,...&Ling F..(2021).Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning.Cryosphere,15(6). |
MLA | Yin Z.,et al."Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning".Cryosphere 15.6(2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yin Z.]的文章 |
[Li X.]的文章 |
[Ge Y.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yin Z.]的文章 |
[Li X.]的文章 |
[Ge Y.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yin Z.]的文章 |
[Li X.]的文章 |
[Ge Y.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。