CCPortal
DOI10.5194/tc-15-3181-2021
Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach
Mattea E.; MacHguth H.; Kronenberg M.; Van Pelt W.; Bassi M.; Hoelzle M.
发表日期2021
ISSN19940416
起始页码3181
结束页码3205
卷号15期号:7
英文摘要Our changing climate is expected to affect ice core records as cold firn progressively transitions to a temperate state. Thus, there is a need to improve our understanding and to further develop quantitative process modeling, to better predict cold firn evolution under a range of climate scenarios. Here we present the application of a distributed, fully coupled energy balance model, to simulate cold firn at the high-alpine glaciated saddle of Colle Gnifetti (Swiss-Italian Alps) over the period 2003-2018. We force the model with high-resolution, long-term, and extensively quality-checked meteorological data measured in the closest vicinity of the firn site, at the highest automatic weather station in Europe (Capanna Margherita, 4560 m a.s.l.). The model incorporates the spatial variability of snow accumulation rates and is calibrated using several partly unpublished high-altitude measurements from the Monte Rosa area. The simulation reveals a very good overall agreement in the comparison with a large archive of firn temperature profiles. Our results show that surface melt over the glaciated saddle is increasing by 3-4 mm w.e. yr-2 depending on the location (29 %-36 % in 16 years), although with large inter-annual variability. Analysis of modeled melt indicates the frequent occurrence of small melt events (<4 mm w.e.), which collectively represent a significant fraction of the melt totals. Modeled firn warming rates at 20 m depth are relatively uniform above 4450 m a.s.l. (0.4-0.5 C per decade). They become highly variable at lower elevations, with a marked dependence on surface aspect and absolute values up to 2.5 times the local rate of atmospheric warming. Our distributed simulation contributes to the understanding of the thermal regime and evolution of a prominent site for alpine ice cores and may support the planning of future core drilling efforts. Moreover, thanks to an extensive archive of measurements available for comparison, we also highlight the possibilities of model improvement most relevant to the investigation of future scenarios, such as the fixed-depth parametrized routine of deep preferential percolation. © Authors 2021
英文关键词firn; numerical model; spatial resolution; Colle Gnifetti Glacier
语种英语
来源期刊Cryosphere
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/202378
作者单位Department of Geosciences, University of Fribourg, Fribourg, Switzerland; Department of Earth Sciences, Uppsala University, Uppsala, Sweden; Department of Forecasting Systems, Regional Agency for Environmental Protection of Piedmont, Turin, Italy
推荐引用方式
GB/T 7714
Mattea E.,MacHguth H.,Kronenberg M.,et al. Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach[J],2021,15(7).
APA Mattea E.,MacHguth H.,Kronenberg M.,Van Pelt W.,Bassi M.,&Hoelzle M..(2021).Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach.Cryosphere,15(7).
MLA Mattea E.,et al."Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach".Cryosphere 15.7(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mattea E.]的文章
[MacHguth H.]的文章
[Kronenberg M.]的文章
百度学术
百度学术中相似的文章
[Mattea E.]的文章
[MacHguth H.]的文章
[Kronenberg M.]的文章
必应学术
必应学术中相似的文章
[Mattea E.]的文章
[MacHguth H.]的文章
[Kronenberg M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。