Climate Change Data Portal
DOI | 10.5194/tc-14-1727-2020 |
Evaluation of Arctic sea ice drift and its dependency on near-surface wind and sea ice conditions in the coupled regional climate model HIRHAM-NAOSIM | |
Yu X.; Rinke A.; Dorn W.; Spreen G.; Lüpkes C.; Sumata H.; Gryanik V.M. | |
发表日期 | 2020 |
ISSN | 19940416 |
起始页码 | 1727 |
结束页码 | 1746 |
卷号 | 14期号:5 |
英文摘要 | We examine the simulated Arctic sea ice drift speed for the period 2003-2014 in the coupled Arctic regional climate model HIRHAM-NAOSIM 2.0. In particular, we evaluate the dependency of the drift speed on the near-surface wind speed and sea ice conditions. Considering the seasonal cycle of the Arctic basin averaged drift speed, the model reproduces the summer-autumn drift speed well but significantly overestimates the winter-spring drift speed, compared to satellite-derived observations. Also, the model does not capture the observed seasonal phase lag between drift and wind speed, but the simulated drift speed is more in phase with the near-surface wind. The model calculates a realistic negative correlation between drift speed and ice thickness and between drift speed and ice concentration during summer-autumn when the ice concentration is relatively low, but the correlation is weaker than observed. A daily grid-scale diagnostic indicates that the model reproduces the observed positive correlation between drift and wind speed. The strongest impact of wind changes on drift speed occurs for high and moderate wind speeds, with a low impact for rather calm conditions. The correlation under low-wind conditions is overestimated in the simulations compared to observation/ reanalysis data. A sensitivity experiment demonstrates the significant effects of sea ice form drag from floe edges included by an improved parameterization of the transfer coefficients for momentum and heat over sea ice. However, this does not improve the agreement of the modeled drift speed / wind speed ratio with observations based on reanalysis data for wind and remote sensing data for sea ice drift. An improvement might be achieved by tuning parameters that are not well established by observations. © Author(s) 2020. |
英文关键词 | climate modeling; coupling; drag; ice drift; ice thickness; parameterization; regional climate; sea ice; surface wind; wind velocity; Arctic Ocean |
语种 | 英语 |
来源期刊 | Cryosphere
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/202260 |
作者单位 | Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany; School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China; Institute of Environmental Physics, University of Bremen, Bremen, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Ocean and Sea Ice, Norwegian Polar Institute, Tromsø, Norway |
推荐引用方式 GB/T 7714 | Yu X.,Rinke A.,Dorn W.,et al. Evaluation of Arctic sea ice drift and its dependency on near-surface wind and sea ice conditions in the coupled regional climate model HIRHAM-NAOSIM[J],2020,14(5). |
APA | Yu X..,Rinke A..,Dorn W..,Spreen G..,Lüpkes C..,...&Gryanik V.M..(2020).Evaluation of Arctic sea ice drift and its dependency on near-surface wind and sea ice conditions in the coupled regional climate model HIRHAM-NAOSIM.Cryosphere,14(5). |
MLA | Yu X.,et al."Evaluation of Arctic sea ice drift and its dependency on near-surface wind and sea ice conditions in the coupled regional climate model HIRHAM-NAOSIM".Cryosphere 14.5(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yu X.]的文章 |
[Rinke A.]的文章 |
[Dorn W.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yu X.]的文章 |
[Rinke A.]的文章 |
[Dorn W.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yu X.]的文章 |
[Rinke A.]的文章 |
[Dorn W.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。