Climate Change Data Portal
DOI | 10.5194/tc-14-4103-2020 |
Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica | |
Arthur J.F.; Stokes C.R.; Jamieson S.S.R.; Rachel Carr J.; Leeson A.A. | |
发表日期 | 2020 |
ISSN | 19940416 |
起始页码 | 4103 |
结束页码 | 4120 |
卷号 | 14期号:11 |
英文摘要 | Supraglacial lakes (SGLs) enhance surface melting and can flex and fracture ice shelves when they grow and subsequently drain, potentially leading to ice shelf disintegration. However, the seasonal evolution of SGLs and their influence on ice shelf stability in East Antarctica remains poorly understood, despite some potentially vulnerable ice shelves having high densities of SGLs. Using optical satellite imagery, air temperature data from climate reanalysis products and surface melt predicted by a regional climate model, we present the first long-term record (2000–2020) of seasonal SGL evolution on Shackleton Ice Shelf, which is Antarctica’s northernmost remaining ice shelf and buttresses Denman Glacier, a major outlet of the East Antarctic Ice Sheet. In a typical melt season, we find hundreds of SGLs with a mean area of 0.02 km2, a mean depth of 0.96 m and a mean total meltwater volume of 7.45 × 106 m3. At their most extensive, SGLs cover a cumulative area of 50.7 km2 and are clustered near to the grounding line, where densities approach 0.27 km2 km−2. Here, SGL development is linked to an albedo-lowering feedback associated with katabatic winds, together with the presence of blue ice and exposed rock. Although below-average seasonal (December–January–February, DJF) temperatures are associated with below-average peaks in total SGL area and volume, warmer seasonal temperatures do not necessarily result in higher SGL areas and volumes. Rather, peaks in total SGL area and volume show a much closer correspondence with short-lived high-magnitude snowmelt events. We therefore suggest seasonal lake evolution on this ice shelf is instead more sensitive to snowmelt intensity associated with katabatic-wind-driven melting. Our analysis provides important constraints on the boundary conditions of supraglacial hydrology models and numerical simulations of ice shelf stability. © Author(s) 2020. This work is distributed under |
英文关键词 | air temperature; boundary condition; hydrological modeling; ice shelf; lake evolution; meltwater; regional climate; satellite imagery; snowmelt; Antarctic Ice Sheet; Antarctica; East Antarctic Ice Sheet; East Antarctica; East Antarctica |
语种 | 英语 |
来源期刊 | Cryosphere |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/202019 |
作者单位 | Department of Geography, Durham University, Durham, DH1 3LE, United Kingdom; School of Geography, Politics and Sociology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom; Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom |
推荐引用方式 GB/T 7714 | Arthur J.F.,Stokes C.R.,Jamieson S.S.R.,et al. Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica[J],2020,14(11). |
APA | Arthur J.F.,Stokes C.R.,Jamieson S.S.R.,Rachel Carr J.,&Leeson A.A..(2020).Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica.Cryosphere,14(11). |
MLA | Arthur J.F.,et al."Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica".Cryosphere 14.11(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。