CCPortal
Collaborative Research: Climate effects on Mn oxidation states in soils and Mn/SOM interactions
项目编号2027290
Peter Vitousek (Principal Investigator)
项目主持机构Stanford University
开始日期2020-09-01
结束日期2023-08-31
英文摘要This research project seeks to understand the role that the element manganese (Mn) plays in driving the degradation of soil organic matter (SOM). Mn takes multiple chemical forms in the soil, depending on oxygen availability and acidity in the soil; some of these forms are more active in driving the degradation of SOM than others. This proposed research will use a combination of high-technology tools to evaluate the forms of Mn, and experiments to evaluate the interactions of these forms with SOM and with the populations and activity of soil bacteria and fungi. The project will also afford research training opportunities for undergraduate and graduate students and opportunities to broaden participation of members of underrepresented groups in science, including community outreach to Native Hawaiians.

SOM is the largest pool of potentially active carbon (C) in the biosphere, but much of that C turns over slowly because it is chemically recalcitrant and/or physically protected. Mn can override this recalcitrance, driving SOM breakdown through multiple pathways that relate to its three oxidation states. This project will evaluate how the oxidation state of Mn varies as a function of rainfall, and how the different oxidation states of Mn drive the decomposition of SOM. Fieldwork will take place on a well-defined precipitation gradient in the Hawaiian Islands, on which most potential controls of ecosystem processes can be held relatively constant while climate varies widely (from <300 mm/yr annual precipitation to >3200 mm/yr) and in well-defined ways; it also draws upon information from National Ecological Observatory Network (NEON) and other sites to evaluate Mn oxidation states and their implications in a broad range of sites that differ in other factors in addition to precipitation, as a test of the hypothesis that precipitation is the dominant driver of Mn oxidation states and its consequences to SOM stability. This project will build upon an ongoing partnership with a Native Hawaiian community organization (Ulu Mau Puanui [UMP]) that is restoring a traditional agricultural system at the same field sites will be used in this research project. Scientists and students in this project will work with UMP to develop curricula and to reach many of the 600+ learners (about half of whom are Native Hawaiian) who visit the site each year; it will also collaborate with Native Hawaiian scientists to evaluate the role of Mn in traditional Hawaiian agricultural systems. The project will include undergraduate and graduate students who belong to underrepresented groups in science. Finally, the project will take part in a well-established summer program at the University of Wyoming to broaden participation of members of underrepresented groups in science.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学科分类09 - 环境科学;0903 - 环境生物学
资助机构US-NSF
项目经费506851
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/191005
推荐引用方式
GB/T 7714
Peter Vitousek .Collaborative Research: Climate effects on Mn oxidation states in soils and Mn/SOM interactions.2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Peter Vitousek (Principal Investigator)]的文章
百度学术
百度学术中相似的文章
[Peter Vitousek (Principal Investigator)]的文章
必应学术
必应学术中相似的文章
[Peter Vitousek (Principal Investigator)]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。