Climate Change Data Portal
DOI | 10.1039/d0ee02730h |
Solar-driven ionic power generation: Via a film of nanocellulose @ conductive metal-organic framework | |
Zhou S.; Qiu Z.; Strømme M.; Xu C. | |
发表日期 | 2021 |
ISSN | 17545692 |
起始页码 | 900 |
结束页码 | 905 |
卷号 | 14期号:2 |
英文摘要 | Solar energy fits well with the increasing demand for clean sustainable energy. This paper describes a freestanding hybrid film composed of a conductive metal-organic framework layered on cellulose nanofibres which enables efficient solar power generation. The working principle, which is different from the mechanisms of traditional photovoltaic or solid-state thermoelectric generation systems, is based on ionic thermophoresis and electrokinetic effects. Given the strong light absorption and low thermal conductivity of the film, a large thermal gradient can be produced on the surface under light illumination to induce fast water evaporation in an aqueous electrolyte. The thermal gradient and the water evaporation drive selective ion transport through the charged nanochannels, which generates ionic thermoelectric and streaming potentials, respectively. The assembled device can produce a sustained voltage output of ∼1.1 V, with a high power density of up to 15 W m-2 under one sun illumination. This study provides a new route for solar power generation. © The Royal Society of Chemistry. |
英文关键词 | Cellulose; Cellulose nanocrystals; Electrolytes; Evaporation; Light absorption; Metal-Organic Frameworks; Nanocellulose; Organometallics; Photovoltaic effects; Solar energy; Solar power plants; Thermal conductivity; Thermal gradients; Thermoelectric energy conversion; Water absorption; Aqueous electrolyte; Cellulose nanofibres; Electrokinetic effect; Low thermal conductivity; One-sun illumination; Selective ion transport; Streaming Potential; Thermoelectric generation systems; Solar power generation; alternative energy; cellulose; detection method; electrolyte; equipment; power generation; solar power; thermal conductivity; Cellulose; Electrolytes; Evaporation; Light Absorption; Thermal Conductivity; Water Absorption |
语种 | 英语 |
来源期刊 | Energy & Environmental Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190779 |
作者单位 | Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 751 03, Sweden; Solid State Physics, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 751 03, Sweden |
推荐引用方式 GB/T 7714 | Zhou S.,Qiu Z.,Strømme M.,et al. Solar-driven ionic power generation: Via a film of nanocellulose @ conductive metal-organic framework[J],2021,14(2). |
APA | Zhou S.,Qiu Z.,Strømme M.,&Xu C..(2021).Solar-driven ionic power generation: Via a film of nanocellulose @ conductive metal-organic framework.Energy & Environmental Science,14(2). |
MLA | Zhou S.,et al."Solar-driven ionic power generation: Via a film of nanocellulose @ conductive metal-organic framework".Energy & Environmental Science 14.2(2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhou S.]的文章 |
[Qiu Z.]的文章 |
[Strømme M.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhou S.]的文章 |
[Qiu Z.]的文章 |
[Strømme M.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhou S.]的文章 |
[Qiu Z.]的文章 |
[Strømme M.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。