Climate Change Data Portal
DOI | 10.1039/d0ee03898a |
Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer | |
Zhang X.; Li J.; Liu D.; Liu M.; Zhou T.; Qi K.; Shi L.; Zhu Y.; Qian Y. | |
发表日期 | 2021 |
ISSN | 17545692 |
起始页码 | 3120 |
结束页码 | 3129 |
卷号 | 14期号:5 |
英文摘要 | The zinc metal anode in aqueous zinc-ion batteries (AZIBs) is considerably impeded by uncontrollable dendrite growth and intricately water-induced corrosion, leading to low Coulombic efficiency (CE) and limited lifespan. Herein, a bifunctional cellulose nanowhisker-graphene (CNG) membrane was constructed to mitigate these problems. Experimental analysis and molecular dynamics simulation reveal that the CNG membrane, functioning as a desolvation layer to preclude H2O molecules encountering the Zn anode, retards the water-induced corrosion reaction. This CNG layer with negative surface charges can simultaneously generate a deanionization shock by spreading cations but screening anions to obtain redirected Zn deposition parallel to the (0002)Zn plane. Furthermore, the flexible and toughened CNG membrane could withstand a strong tensile force (8.54 N) and a great puncture force (0.10 N) to favorably accommodate the Zn anode surface fluctuation during plating/stripping. Accordingly, CNG/Zn anode delivers an enhanced CE (99.4%) and a longer cycle life (~5500 h), over 27 times that of a bare Zn anode. A full MnO2/graphene-CNG/Zn battery exhibits a high discharge capacity (307 mA h g-1) and maintains a high capacity retention of 87.8% at 5C after 5000 cycles. © 2021 The Royal Society of Chemistry. |
英文关键词 | Anodes; Corrosion; Manganese oxide; Molecular dynamics; Reaction kinetics; Secondary batteries; Cellulose nanowhiskers; Corrosion reaction; Coulombic efficiency; Discharge capacities; Experimental analysis; Interface layer; Molecular dynamics simulations; Negative surface charges; Zinc; calcification; cation; cellulose; detection method; electrode; experimental study; fuel cell; membrane; simulation; Anodes; Capacity; Corrosion; Life; Reaction Kinetics; Surfaces; Water; Zinc |
语种 | 英语 |
来源期刊 | Energy & Environmental Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190674 |
作者单位 | Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China; Department of Chemistry and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China |
推荐引用方式 GB/T 7714 | Zhang X.,Li J.,Liu D.,et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer[J],2021,14(5). |
APA | Zhang X..,Li J..,Liu D..,Liu M..,Zhou T..,...&Qian Y..(2021).Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer.Energy & Environmental Science,14(5). |
MLA | Zhang X.,et al."Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer".Energy & Environmental Science 14.5(2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang X.]的文章 |
[Li J.]的文章 |
[Liu D.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang X.]的文章 |
[Li J.]的文章 |
[Liu D.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang X.]的文章 |
[Li J.]的文章 |
[Liu D.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。