CCPortal
DOI10.1039/d0ee03679j
Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2
Corral D.; Feaster J.T.; Sobhani S.; Deotte J.R.; Lee D.U.; Wong A.A.; Hamilton J.; Beck V.A.; Sarkar A.; Hahn C.; Jaramillo T.F.; Baker S.E.; Duoss E.B.
发表日期2021
ISSN17545692
起始页码3064
结束页码3074
卷号14期号:5
英文摘要Advanced manufacturing (AM) represents an appealing approach for creating novel electrochemical systems for chemicals synthesis. In this work, we demonstrate AM for rapid development and testing for improved performance for the carbon dioxide reduction reaction across an evolution of vapor-fed reactor designs. In our final design, we observe activation- and mixed-control regimes for a variety of operating conditions via inlet CO2 flow rate and electrochemical potential. Furthermore, we define a dimensionless number (Da) to identify mass transport regimes by exploring the impact of hypothesized underlying mass transport mechanisms, including consumption of CO2via OH-, increased local temperatures, and partial penetration of electrolyte into gas diffusion layer. The accelerated pace of reactor design and development led to high geometric current densities (500 mA cm-2), heightened selectivity (85.5% FE C2+ products), and increased carbon dioxide conversion (16.6%) and cathodic energy efficiency (49.6% CO2R). Using AM vapor-fed reactors, we attain high ethylene (3.67%) and record ethanol (3.66%) yields compared to the literature. This work underscores the promise of AM for accelerating reactor design, understanding of governing phenomena, and improving the performance of catalytic systems. © 2021 The Royal Society of Chemistry.
英文关键词Conversion efficiency; Diffusion in gases; Electrolytes; Energy efficiency; Ethylene; Manufacture; Pollution control; Product design; Advanced manufacturing; Carbon dioxide conversions; Carbon dioxide reduction; Development and testing; Dimensionless number; Electrochemical potential; Electrochemical systems; Gas diffusion layers; Carbon dioxide; carbon dioxide; catalysis; catalyst; concentration (composition); dimensionless number; efficiency measurement; electrolyte; energy efficiency; manufacturing; mass transport
语种英语
来源期刊Energy & Environmental Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/190670
作者单位Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States; Suncat Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States; Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States; Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States; Total Ep Research and Technology Usa, Llc, Houston, TX 77002, United States; Suncat Center for Interface Science and Catalysis, Slac National Accelerator Laboratory, Menlo Park, CA 94025, United States
推荐引用方式
GB/T 7714
Corral D.,Feaster J.T.,Sobhani S.,et al. Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2[J],2021,14(5).
APA Corral D..,Feaster J.T..,Sobhani S..,Deotte J.R..,Lee D.U..,...&Duoss E.B..(2021).Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2.Energy & Environmental Science,14(5).
MLA Corral D.,et al."Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2".Energy & Environmental Science 14.5(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Corral D.]的文章
[Feaster J.T.]的文章
[Sobhani S.]的文章
百度学术
百度学术中相似的文章
[Corral D.]的文章
[Feaster J.T.]的文章
[Sobhani S.]的文章
必应学术
必应学术中相似的文章
[Corral D.]的文章
[Feaster J.T.]的文章
[Sobhani S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。