Climate Change Data Portal
DOI | 10.1039/d1ee00569c |
Fe1N4-O1site with axial Fe-O coordination for highly selective CO2reduction over a wide potential range | |
Chen Z.; Huang A.; Yu K.; Cui T.; Zhuang Z.; Liu S.; Li J.; Tu R.; Sun K.; Tan X.; Zhang J.; Liu D.; Zhang Y.; Jiang P.; Pan Y.; Chen C.; Peng Q.; Li Y. | |
发表日期 | 2021 |
ISSN | 17545692 |
起始页码 | 3430 |
结束页码 | 3437 |
卷号 | 14期号:6 |
英文摘要 | On the path to deploying the electrochemical CO2reduction reaction (CO2RR) to CO, the narrow potential range under the high Faraday efficiency of CO (FECO) still blocks its ultimate practical viability. Engineering the electronic structureviaheteroatom doping is supposed to be efficient. However, a feasible synthesis and precise control are still challenging. Here, we propose a fast-pyrolyzing and controllable-activation strategy to construct an O-rich carbonaceous support and atomically dispersed FeN4site with axial O coordination (Fe1N4-O1), which was confirmed by aberration-corrected electron microscopy and X-ray absorption spectroscopy. A wide potential range of 310 mV (−0.56 V to −0.87 Vvs.RHE) could be achieved when FECOwas continuously maintained at nearly 100%, which exceeded the existing results to the best of our knowledge. DFT calculations revealed that the superior performance originated from the axial O-coordination induced electronic localization enhancement, which could facilitate the desorption of CO and increase the energy barrier for the competitive hydrogen evolution reaction. © The Royal Society of Chemistry 2021. |
英文关键词 | Coordination reactions; Hydrogen evolution reaction; Iron compounds; X ray absorption spectroscopy; Aberration-corrected electron microscopy; Carbonaceous supports; DFT calculation; Electronic localization; Faraday efficiency; Potential range; Precise control; Pyrolyzing; Nitrogen compounds; absorption; activation energy; carbon dioxide; chemical bonding; correction; desorption; electrochemistry; hydrogen; iron; performance assessment; reduction |
语种 | 英语 |
来源期刊 | Energy & Environmental Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190646 |
作者单位 | Department of Chemistry, Tsinghua University, Beijing, 100084, China; School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China |
推荐引用方式 GB/T 7714 | Chen Z.,Huang A.,Yu K.,et al. Fe1N4-O1site with axial Fe-O coordination for highly selective CO2reduction over a wide potential range[J],2021,14(6). |
APA | Chen Z..,Huang A..,Yu K..,Cui T..,Zhuang Z..,...&Li Y..(2021).Fe1N4-O1site with axial Fe-O coordination for highly selective CO2reduction over a wide potential range.Energy & Environmental Science,14(6). |
MLA | Chen Z.,et al."Fe1N4-O1site with axial Fe-O coordination for highly selective CO2reduction over a wide potential range".Energy & Environmental Science 14.6(2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen Z.]的文章 |
[Huang A.]的文章 |
[Yu K.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen Z.]的文章 |
[Huang A.]的文章 |
[Yu K.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen Z.]的文章 |
[Huang A.]的文章 |
[Yu K.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。