Climate Change Data Portal
DOI | 10.1039/c6ee03656b |
A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells | |
Chen Y.; Chen Y.; Ding D.; Ding Y.; Choi Y.; Zhang L.; Yoo S.; Chen D.; DeGlee B.; Xu H.; Lu Q.; Zhao B.; Vardar G.; Wang J.; Bluhm H.; Crumlin E.J.; Yang C.; Liu J.; Yildiz B.; Liu M. | |
发表日期 | 2017 |
ISSN | 17545692 |
起始页码 | 964 |
结束页码 | 971 |
卷号 | 10期号:4 |
英文摘要 | The sluggish oxygen reduction reaction (ORR) greatly reduces the energy efficiency of solid oxide fuel cells (SOFCs). Here we report our findings in dramatically enhancing the ORR kinetics and durability of the state-of-the-art La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode using a hybrid catalyst coating composed of a conformal PrNi0.5Mn0.5O3 (PNM) thin film with exsoluted PrOx nanoparticles. At 750°C, the hybrid catalyst-coated LSCF cathode shows a polarization resistance of ∼0.022 Ω cm2, about 1/6 of that for a bare LSCF cathode (∼0.134 Ω cm2). Further, anode-supported cells with the hybrid catalyst-coated LSCF cathode demonstrate remarkable peak power densities (∼1.21 W cm-2) while maintaining excellent durability (0.7 V for ∼500 h). Near Ambient X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-Ray Absorption Fine Structure (NEXAFS) analyses, together with density functional theory (DFT) calculations, indicate that the oxygen-vacancy-rich surfaces of the PrOx nanoparticles greatly accelerate the rate of electron transfer in the ORR whereas the thin PNM film facilitates rapid oxide-ion transport while drastically enhancing the surface stability of the LSCF electrode. © The Royal Society of Chemistry 2017. |
英文关键词 | Catalysts; Cathodes; Cobalt; Density functional theory; Durability; Electrodes; Electrolytic reduction; Energy efficiency; Fuel cells; Manganese; Nanoparticles; Oxygen; Oxygen vacancies; X ray absorption; X ray photoelectron spectroscopy; Anode supported cell; Electron transfer; Near edge x-ray absorption fine structure analysis; Oxygen reduction reaction; Peak power densities; Polarization resistances; Solid oxide fuel cells (SOFCs); Surface stability; Solid oxide fuel cells (SOFC); catalyst; chemical process; electrode; energy efficiency; fuel cell; inorganic compound; nanoparticle; oxide; oxygen; polarization; reaction kinetics; reduction |
语种 | 英语 |
来源期刊 | Energy & Environmental Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190490 |
作者单位 | Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, United States; Laboratory for Electrochemical Interfaces, Department of Nuclear Science and Engineering, Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; SABIC Technology Center, Riyadh, 11551, Saudi Arabia; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States |
推荐引用方式 GB/T 7714 | Chen Y.,Chen Y.,Ding D.,et al. A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells[J],2017,10(4). |
APA | Chen Y..,Chen Y..,Ding D..,Ding Y..,Choi Y..,...&Liu M..(2017).A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells.Energy & Environmental Science,10(4). |
MLA | Chen Y.,et al."A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells".Energy & Environmental Science 10.4(2017). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen Y.]的文章 |
[Chen Y.]的文章 |
[Ding D.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen Y.]的文章 |
[Chen Y.]的文章 |
[Ding D.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen Y.]的文章 |
[Chen Y.]的文章 |
[Ding D.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。