CCPortal
DOI10.1039/c7ee03503a
Band engineering of multicomponent semiconductors: A general theoretical model on the anion group
Meng X.Y.; Liu D.Y.; Qin G.W.
发表日期2018
ISSN17545692
起始页码692
结束页码701
卷号11期号:3
英文摘要Development of energy conversion semiconductor materials has attracted increasing interest over the past three decades, but most successful semiconductors are unary or binary, rather than multicomponent semiconductors (MCSCs). There is a several orders of magnitude wider variety of MCSCs than unary and binary semiconductors, but very few electronic energy theories have been able to deal with more than two composition variables so far, and thus desired MCSCs are hard to predict. In this work, we propose a universal anion group model based on the analysis of electronic structures in an ABO3 perovskite prototype. Under a first order approximation, that is, the 'A' cation and the (BO6) anion group have very little hybridization, we find that the band gap of the ABO3 semiconductor is mainly determined by the (BO6) anion group and is very similar to that of binary compounds consisting of the same anion group constituents, while the band edges can be adjusted by the 'A'-site cation. When more intense hybridizations exist, the predicted results can be amended by considering the higher order approximation. Using this model, the band gaps and edges of quaternary AgxNa(1-x)NbO3 perovskites and ZnxMg(1-x)Fe2O4 spinels have been predicted and are consistent with reported experiments and first principles calculations, further confirming the validity of the proposed model. Therefore, an anion group model on MCSCs can not only promote the probability of success in band engineering, but can also pave the way for speeding up the design of novel and desired MCSCs using known binary semiconductors for use in the field of energy conversion materials as photocatalysts, light-emitting materials, complementary light-absorption materials for solar cells, etc. © The Royal Society of Chemistry 2018.
英文关键词Bins; Calculations; Cell engineering; Electromagnetic wave absorption; Electronic structure; Energy conversion; Energy gap; Light absorption; Light emission; Perovskite; Positive ions; Semiconductor materials; Absorption material; Binary semiconductors; First-order approximations; First-principles calculation; Higher-order approximation; Light emitting materials; Probability of success; Theoretical modeling; Ions; absorption; anion; catalysis; electrical power; equipment; model validation; numerical model; perovskite; photolysis
语种英语
来源期刊Energy & Environmental Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/190309
作者单位College of Sciences, Northeastern University, Shenyang, 110819, China; Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
推荐引用方式
GB/T 7714
Meng X.Y.,Liu D.Y.,Qin G.W.. Band engineering of multicomponent semiconductors: A general theoretical model on the anion group[J],2018,11(3).
APA Meng X.Y.,Liu D.Y.,&Qin G.W..(2018).Band engineering of multicomponent semiconductors: A general theoretical model on the anion group.Energy & Environmental Science,11(3).
MLA Meng X.Y.,et al."Band engineering of multicomponent semiconductors: A general theoretical model on the anion group".Energy & Environmental Science 11.3(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Meng X.Y.]的文章
[Liu D.Y.]的文章
[Qin G.W.]的文章
百度学术
百度学术中相似的文章
[Meng X.Y.]的文章
[Liu D.Y.]的文章
[Qin G.W.]的文章
必应学术
必应学术中相似的文章
[Meng X.Y.]的文章
[Liu D.Y.]的文章
[Qin G.W.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。