Climate Change Data Portal
DOI | 10.1039/c8ee00227d |
Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries | |
Kim U.-H.; Jun D.-W.; Park K.-J.; Zhang Q.; Kaghazchi P.; Aurbach D.; Major D.T.; Goobes G.; Dixit M.; Leifer N.; Wang C.M.; Yan P.; Ahn D.; Kim K.-H.; Yoon C.S.; Sun Y.-K. | |
发表日期 | 2018 |
ISSN | 17545692 |
起始页码 | 1271 |
结束页码 | 1279 |
卷号 | 11期号:5 |
英文摘要 | Development of advanced high energy density lithium ion batteries is important for promoting electromobility. Making electric vehicles attractive and competitive compared to conventional automobiles depends on the availability of reliable, safe, high power, and highly energetic batteries whose components are abundant and cost effective. Nickel rich Li[NixCoyMn1-x-y]O2 layered cathode materials (x > 0.5) are of interest because they can provide very high specific capacity without pushing charging potentials to levels that oxidize the electrolyte solutions. However, these cathode materials suffer from stability problems. We discovered that doping these materials with tungsten (1 mol%) remarkably increases their stability due to a partial layered to cubic (rock salt) phase transition. We demonstrate herein highly stable Li ion battery prototypes consisting of tungsten-stabilized Ni rich cathode materials (x > 0.9) with specific capacities >220 mA h g-1. This development can increase the energy density of Li ion batteries more than 30% above the state of the art without compromising durability. © 2018 The Royal Society of Chemistry. |
英文关键词 | Cathodes; Cost effectiveness; Electrolytes; Ions; Transition metal oxides; Tungsten; Cath-ode materials; Electrolyte solutions; High energy densities; High specific capacity; Layered cathode materials; Specific capacities; Stability problem; State of the art; Lithium-ion batteries; automobile; electric vehicle; electrode; electrolyte; energy; ion; lithium; nickel; oxide; phase transition; rock salt; transition element; tungsten |
语种 | 英语 |
来源期刊 | Energy & Environmental Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190249 |
作者单位 | Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea; Physiklische und Theoretische Chemie, Freie Universitat, Berlin, D-14195, Germany; Department of Chemistry, BINA (BIU Institute of Nano-technology and Advanced Materials), Bar-Ilan University, Ramat-Gan, 5290002, Israel; Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, United States; PLS-II Beamline Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea; Global Frontier Center for Hybrid Interface Materials, Pusan National University, Busan, 609-735, South Korea; Department of Materials Science and Engineering, Hanyang University, Seoul, 04763, South Korea; Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1), Materials Synthesis and Processing, Wilhelm-Johnen-Straße, Jülich, 52425, Germany |
推荐引用方式 GB/T 7714 | Kim U.-H.,Jun D.-W.,Park K.-J.,et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries[J],2018,11(5). |
APA | Kim U.-H..,Jun D.-W..,Park K.-J..,Zhang Q..,Kaghazchi P..,...&Sun Y.-K..(2018).Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries.Energy & Environmental Science,11(5). |
MLA | Kim U.-H.,et al."Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries".Energy & Environmental Science 11.5(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。