Climate Change Data Portal
DOI | 10.1039/c8ee01140k |
A highly active, CO2-tolerant electrode for the oxygen reduction reaction | |
Chen Y.; Yoo S.; Choi Y.; Kim J.H.; Ding Y.; Pei K.; Murphy R.; Zhang Y.; Zhao B.; Zhang W.; Chen H.; Chen Y.; Yuan W.; Yang C.; Liu M. | |
发表日期 | 2018 |
ISSN | 17545692 |
起始页码 | 2458 |
结束页码 | 2466 |
卷号 | 11期号:9 |
英文摘要 | One challenge facing the development of high-performance cathodes for solid oxide fuel cells (SOFC) is the fast degradation rate of cathodes due to poisoning by contaminants commonly encountered in ambient air such as CO2. Here we report a double perovskite PrBa0.8Ca0.2Co2O5+δ (PBCC) cathode with excellent ORR activity and remarkable CO2 tolerance under realistic operation conditions. When tested in a symmetrical cell in air with ∼1 vol% CO2 at 750 °C, the PBCC electrode shows an area specific resistance of ∼0.024 Ω cm2, which increases to 0.028 Ω cm2 after 1000 h operation. The degradation rate is ∼1/24 of that of the state-of-the-art La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode under the same conditions. Impedance spectroscopy and in situ surface enhanced Raman spectroscopy analyses indicate that the surface of the PBCC electrode is much more active for oxygen exchange and more robust against CO2 than that of LSCF, as confirmed by density functional theory calculations. The fast ORR kinetics and excellent durability of PBCC in air with CO2 highlight the potential of PBCC as a highly promising material for devices involving oxygen electrochemistry such as solid oxide fuel cells, electrolysis cells, or gas separation membranes. © 2018 The Royal Society of Chemistry. |
英文关键词 | Barium compounds; Carbon dioxide; Cathodes; Degradation; Density functional theory; Electrolytic reduction; Gas permeable membranes; Iron compounds; Lanthanum compounds; Perovskite; Praseodymium compounds; Raman spectroscopy; Strontium compounds; Area-specific resistances; Double perovskites; Gas separation membrane; Impedance spectroscopy; La0.6sr0.4co0.2fe0.8o3; Operation conditions; Oxygen reduction reaction; Surface enhanced Raman spectroscopy; Solid oxide fuel cells (SOFC); carbon dioxide; electrode; operations technology; oxygen; performance assessment; reduction |
语种 | 英语 |
来源期刊 | Energy & Environmental Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190149 |
作者单位 | School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr NW, Atlanta, GA 30332-0245, United States; SABIC Technology Center, Riyadh, 11551, Saudi Arabia; National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin Heilongjiang, 150001, China; Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China |
推荐引用方式 GB/T 7714 | Chen Y.,Yoo S.,Choi Y.,et al. A highly active, CO2-tolerant electrode for the oxygen reduction reaction[J],2018,11(9). |
APA | Chen Y..,Yoo S..,Choi Y..,Kim J.H..,Ding Y..,...&Liu M..(2018).A highly active, CO2-tolerant electrode for the oxygen reduction reaction.Energy & Environmental Science,11(9). |
MLA | Chen Y.,et al."A highly active, CO2-tolerant electrode for the oxygen reduction reaction".Energy & Environmental Science 11.9(2018). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen Y.]的文章 |
[Yoo S.]的文章 |
[Choi Y.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen Y.]的文章 |
[Yoo S.]的文章 |
[Choi Y.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen Y.]的文章 |
[Yoo S.]的文章 |
[Choi Y.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。