Climate Change Data Portal
DOI | 10.1039/c8ee00937f |
Towards a reliable Li-metal-free LiNO3-free Li-ion polysulphide full cell: Via parallel interface engineering | |
Sun J.; Liang J.; Liu J.; Shi W.; Sharma N.; Lv W.; Lv R.; Yang Q.-H.; Amal R.; Wang D.-W. | |
发表日期 | 2018 |
ISSN | 17545692 |
起始页码 | 2509 |
结束页码 | 2520 |
卷号 | 11期号:9 |
英文摘要 | There has been intensive concentration and effort on addressing the notorious challenges of Li-S batteries with respect to polysulphide utilization and lithium dendrite inhibition. However, the search for and optimisation of a Li-metal-free full cell design remain relatively premature in terms of the generic synchronous approach to improve the anode/cathode stability while balancing the anode/cathode capacity. We hereby report a parallel interface engineering (PIE) strategy to enhance the full-cell performance of the Li-ion polysulphide battery. Very importantly, this PIE strategy allows the use of a Li-metal-free anode and a LiNO3-free electrolyte. The cell-level improvement is attributable to more efficient and uniform lithium sulphide deposition on the chemically uniform surfaces of the carbon cathode and suppressed growth of dendritic species on the Li-Al alloy anode with an implantable solid-electrolyte interphase. Quantitative electrochemical alloying for anode fabrication allows increased lithium utilization relative to the total anode capacity. The PIE strategy represents a facile approach to address the troublesome issues of Li-S batteries at the full cell level. © 2018 The Royal Society of Chemistry. |
英文关键词 | Aluminum alloys; Anodes; Binary alloys; Cell engineering; Interfaces (computer); Lithium alloys; Lithium compounds; Lithium sulfur batteries; Lithium-ion batteries; Polysulfides; Solid electrolytes; Anode fabrication; Carbon cathode; Cell performance; Free electrolytes; Lithium dendrite; Parallel interfaces; Solid electrolyte interphase; Suppressed growths; Sulfur compounds; electrochemistry; electrolyte; engineering; fuel cell; interface; lithium; nitrous oxide; optimization |
语种 | 英语 |
来源期刊 | Energy & Environmental Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190144 |
作者单位 | Particles and Catalysis Research Group, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; Shenzhen Key Laboratory for Graphene-based Materials and Engineering, Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China; State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China; Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China; Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China |
推荐引用方式 GB/T 7714 | Sun J.,Liang J.,Liu J.,et al. Towards a reliable Li-metal-free LiNO3-free Li-ion polysulphide full cell: Via parallel interface engineering[J],2018,11(9). |
APA | Sun J..,Liang J..,Liu J..,Shi W..,Sharma N..,...&Wang D.-W..(2018).Towards a reliable Li-metal-free LiNO3-free Li-ion polysulphide full cell: Via parallel interface engineering.Energy & Environmental Science,11(9). |
MLA | Sun J.,et al."Towards a reliable Li-metal-free LiNO3-free Li-ion polysulphide full cell: Via parallel interface engineering".Energy & Environmental Science 11.9(2018). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Sun J.]的文章 |
[Liang J.]的文章 |
[Liu J.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Sun J.]的文章 |
[Liang J.]的文章 |
[Liu J.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Sun J.]的文章 |
[Liang J.]的文章 |
[Liu J.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。