CCPortal
DOI10.1039/c9ee02795e
High-capacity thermochemical CO2 dissociation using iron-poor ferrites
Zhai S.; Rojas J.; Ahlborg N.; Lim K.; Cheng C.H.M.; Xie C.; Toney M.F.; Jung I.-H.; Chueh W.C.; Majumdar A.
发表日期2020
ISSN17545692
起始页码592
结束页码600
卷号13期号:2
英文摘要Dissociation of CO2 to form CO can play a key role in decarbonizing our energy system. We report here a two-step thermochemical cycle using a variety of iron-poor (Fe-poor) ferrites (FeyM1-yOx where y < 2/3) that produce CO with unusually high yield using Fe as the redox active species. Conventional wisdom suggests that increasing the Fe fraction would increase the capacity for CO2 dissociation. Here, we report the opposite result: at partial pressure ratio CO : CO2 = 1 : 100, we demonstrated CO yields of 8.0 ± 1.0 mL-CO per gram from Fe0.35Ni0.65Ox, and 3.7 ± 1.0 mL-CO per gram from Fe0.45Co0.55Ox, at a thermal reduction temperature of 1300 °C; remarkably, these CO2 dissociation capacities are significantly higher than those of state-of-the-art materials such as spinel ferrites (Fe2MO4), (substituted) ceria, and Mn-based perovskite oxides. Optimization of the kinetics of Fe-poor ferrites with a ZrO2 support resulted in higher CO yields per gram of ferrite. The unexpected CO yield vs. Fe ratio trend is consistent with the prediction of calculated ternary phase diagrams, which suggest a swing between spinel and rocksalt phases. These Fe-poor ferrites open new opportunities for tuning the redox properties of oxygen exchange materials. © 2020 The Royal Society of Chemistry.
英文关键词Carbon dioxide; Cerium oxide; Dissociation; Ferrites; Nickel compounds; Perovskite; Redox reactions; Zirconia; Oxygen exchange; Partial pressure ratio; Perovskite oxides; Spinel ferrites; State of the art; Ternary phase diagrams; Thermal reduction; Thermochemical cycles; Iron; carbon dioxide; ferrite; optimization; partial pressure; reaction kinetics; redox conditions; thermochemistry
语种英语
来源期刊Energy & Environmental Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/189704
作者单位Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States; Department of Physics, Harvard University, Cambridge, MA 02138, United States; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States; Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea; Precourt Institute for Energy, Stanford University, Stanford, CA 94305, United States; Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
推荐引用方式
GB/T 7714
Zhai S.,Rojas J.,Ahlborg N.,et al. High-capacity thermochemical CO2 dissociation using iron-poor ferrites[J],2020,13(2).
APA Zhai S..,Rojas J..,Ahlborg N..,Lim K..,Cheng C.H.M..,...&Majumdar A..(2020).High-capacity thermochemical CO2 dissociation using iron-poor ferrites.Energy & Environmental Science,13(2).
MLA Zhai S.,et al."High-capacity thermochemical CO2 dissociation using iron-poor ferrites".Energy & Environmental Science 13.2(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhai S.]的文章
[Rojas J.]的文章
[Ahlborg N.]的文章
百度学术
百度学术中相似的文章
[Zhai S.]的文章
[Rojas J.]的文章
[Ahlborg N.]的文章
必应学术
必应学术中相似的文章
[Zhai S.]的文章
[Rojas J.]的文章
[Ahlborg N.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。