CCPortal
DOI10.1039/d0ee01580f
Tracking ion intercalation into layered Ti3C2MXene films across length scales
Gao Q.; Sun W.; Ilani-Kashkouli P.; Tselev A.; Kent P.R.C.; Kabengi N.; Naguib M.; Alhabeb M.; Tsai W.-Y.; Baddorf A.P.; Huang J.; Jesse S.; Gogotsi Y.; Balke N.
发表日期2020
ISSN17545692
起始页码2549
结束页码2558
卷号13期号:8
英文摘要Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/modelling and experiments to track the intercalation of aqueous Li+, Na+, K+, Cs+, and Mg2+ ions into Ti3C2 MXene. The integrated analysis of experiments assisted by theory/modelling allows for a deep understanding of energy storage processes highlighting the importance of the dynamics of cations, their positionings between MXene sheets, their effects on mechanical properties and capacitive energy storage. Computational simulations and operando calorimetry measurements prove the processes involving cation dehydration and H+ rehydration, showing a good correlation for heat variations between experiments and theory. Operando liquid AFM mapped energy dissipation of ions appears non-uniformly across the MXene surface, indicating heterogeneities of ions inside the MXene and confirming partially the ion behaviour obtained in theory. We directly demonstrate that the average distance between the cation and MXene surface follows a modified two-sided Helmholtz model when plotted versus the open circuit potential capacitance, revealing a different electrical double layer mechanism in confinement. This new fundamental understanding lays the foundation for improved functional devices utilizing electrodes and membranes made of two-dimensional materials. © 2020 The Royal Society of Chemistry.
英文关键词Cesium compounds; Electrodes; Electrolytes; Energy dissipation; Energy storage; Magnesium compounds; Membranes; Positive ions; Titanium compounds; Capacitive energy storage; Computational simulation; Electrical double layers; Electrode interactions; Integrated analysis; Multiscale theories; Open circuit potential; Two-dimensional materials; Computation theory; dehydration; electrode; electrolyte; energy dissipation; energy storage; ion exchange; mechanical property; solvent; tracking
语种英语
来源期刊Energy & Environmental Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/189589
作者单位Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China; Department of Geosciences, Georgia State University, Atlanta, GA 30303, United States; Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal; Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Engineering Physics, 2001 Percival Stern Hall, Tulane University, New Orleans, LA 70118, United States; Department of Materials Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, United States
推荐引用方式
GB/T 7714
Gao Q.,Sun W.,Ilani-Kashkouli P.,et al. Tracking ion intercalation into layered Ti3C2MXene films across length scales[J],2020,13(8).
APA Gao Q..,Sun W..,Ilani-Kashkouli P..,Tselev A..,Kent P.R.C..,...&Balke N..(2020).Tracking ion intercalation into layered Ti3C2MXene films across length scales.Energy & Environmental Science,13(8).
MLA Gao Q.,et al."Tracking ion intercalation into layered Ti3C2MXene films across length scales".Energy & Environmental Science 13.8(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao Q.]的文章
[Sun W.]的文章
[Ilani-Kashkouli P.]的文章
百度学术
百度学术中相似的文章
[Gao Q.]的文章
[Sun W.]的文章
[Ilani-Kashkouli P.]的文章
必应学术
必应学术中相似的文章
[Gao Q.]的文章
[Sun W.]的文章
[Ilani-Kashkouli P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。