Climate Change Data Portal
DOI | 10.1029/2019JB019256 |
Constraints on the Depth, Thickness, and Strength of the G Discontinuity in the Central Pacific From S Receiver Functions | |
Mark H.F.; Collins J.A.; Lizarralde D.; Hirth G.; Gaherty J.B.; Evans R.L.; Behn M.D. | |
发表日期 | 2021 |
ISSN | 21699313 |
卷号 | 126期号:4 |
英文摘要 | The relative motion of the lithosphere with respect to the asthenosphere implies the existence of a boundary zone that accommodates shear between the rigid plates and flowing mantle. This shear zone is typically referred to as the lithosphere-asthenosphere boundary (LAB). The width of this zone and the mechanisms accommodating shear across it have important implications for coupling between mantle convection and surface plate motion. Seismic observations have provided evidence for several physical mechanisms that might help enable relative plate motion, but how these mechanisms each contribute to the overall accommodation of shear remains unclear. Here we present receiver function constraints on the discontinuity structure of the oceanic upper mantle at the NoMelt site in the central Pacific, where local constraints on shear velocity, anisotropy, conductivity, and attenuation down to ∼300 km depth provide a comprehensive picture of upper mantle structure. We image a seismic discontinuity with a Vsv decrease of 4.5% or more over a 0–20 km thick gradient layer centered at a depth of ∼65 km. We associate this feature with the Gutenberg discontinuity (G), and interpret our observation of G as resulting from strain localization across a dehydration boundary based on the good agreement between the discontinuity depth and that of the dry solidus. Transitions in Vsv, azimuthal anisotropy, conductivity, and attenuation observed at roughly similar depths suggest that the G discontinuity represents a region of localized strain within a broader zone accommodating shear between the lithosphere and asthenosphere. © 2021. American Geophysical Union. All Rights Reserved. |
语种 | 英语 |
来源期刊 | Journal of Geophysical Research: Solid Earth
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/187236 |
作者单位 | Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States; Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States; Geological Sciences Department, Brown University, Providence, RI, United States; School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, United States; Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, United States |
推荐引用方式 GB/T 7714 | Mark H.F.,Collins J.A.,Lizarralde D.,et al. Constraints on the Depth, Thickness, and Strength of the G Discontinuity in the Central Pacific From S Receiver Functions[J],2021,126(4). |
APA | Mark H.F..,Collins J.A..,Lizarralde D..,Hirth G..,Gaherty J.B..,...&Behn M.D..(2021).Constraints on the Depth, Thickness, and Strength of the G Discontinuity in the Central Pacific From S Receiver Functions.Journal of Geophysical Research: Solid Earth,126(4). |
MLA | Mark H.F.,et al."Constraints on the Depth, Thickness, and Strength of the G Discontinuity in the Central Pacific From S Receiver Functions".Journal of Geophysical Research: Solid Earth 126.4(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。