Climate Change Data Portal
DOI | 10.1029/2020JB021379 |
Physics-Based Evaluation of the Maximum Magnitude of Potential Earthquakes Induced by the Hutubi (China) Underground Gas Storage | |
Jiang G.; Liu L.; Barbour A.J.; Lu R.; Yang H. | |
发表日期 | 2021 |
ISSN | 21699313 |
卷号 | 126期号:4 |
英文摘要 | The world's largest underground gas storage facility in Hutubi (HUGS), China, is a unique case where cyclic gas injection-extraction induced both seismicity and ground deformation. To assess the potential for future induced seismicity, we develop a framework physically based on a well-constrained hydro-geomechanical model and on fully-coupled poroelastic simulations. We first interpret the spatiotemporal distribution and focal mechanisms of induced earthquakes and take it as a key step and a premise to estimate the magnitude and location of the largest potential earthquake. The sharp increase in seismicity was controlled by poroelastic loading on secondary southwest-dipping thrust faults with spatial scales too small to be resolved by 3D seismic surveys. Both operational and local geological factors affect the seismic productivity at the HUGS site, distinguishing it from most cases of seismicity induced by wastewater disposal and hydraulic fracturing. We then conduct slip tendency analyses for major faults imaged by the seismic data, including the largest reservoir-bounding Hutubi fault hydraulically connected to injection wells. The reactivation potentials of these imaged faults are estimated to be extremely low. Accordingly, future seismicity would most likely occur on failure-prone secondary faults in regions with positive stress perturbation due to poroelastic loading. The maximum magnitude likely depends on the spatial scales of the secondary faults. As the occurrence of detected earthquakes is spatially and temporally consistent with the simulated evolution of Coulomb stress perturbation, the location of the largest potential earthquake probably depends on the sizes of the poroelastic stressing regions. © 2021. American Geophysical Union. All Rights Reserved. |
英文关键词 | cyclic gas injection-extraction; geomechanical modeling; induced seismicity; largest expected earthquake; physical interpretation; underground gas storage |
语种 | 英语 |
来源期刊 | Journal of Geophysical Research: Solid Earth |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/187179 |
作者单位 | School of Geodesy and Geomatics, Wuhan UniversityHubei, China; Earth System Science Programme, Chinese University of Hong Kong, Hong Kong; U.S. Geological Survey, Earthquake Science Center, Menlo Park, CA, United States; Institute of Geology, China Earthquake Administration, Beijing, China |
推荐引用方式 GB/T 7714 | Jiang G.,Liu L.,Barbour A.J.,et al. Physics-Based Evaluation of the Maximum Magnitude of Potential Earthquakes Induced by the Hutubi (China) Underground Gas Storage[J],2021,126(4). |
APA | Jiang G.,Liu L.,Barbour A.J.,Lu R.,&Yang H..(2021).Physics-Based Evaluation of the Maximum Magnitude of Potential Earthquakes Induced by the Hutubi (China) Underground Gas Storage.Journal of Geophysical Research: Solid Earth,126(4). |
MLA | Jiang G.,et al."Physics-Based Evaluation of the Maximum Magnitude of Potential Earthquakes Induced by the Hutubi (China) Underground Gas Storage".Journal of Geophysical Research: Solid Earth 126.4(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。