CCPortal
DOI10.1029/2019JD031304
Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme
Kotsuki S.; Sato Y.; Miyoshi T.
发表日期2020
ISSN2169897X
卷号125期号:1
英文摘要This study proposes using data assimilation (DA) for climate research as a tool for optimizing model parameters objectively. Mitigating radiation bias is very important for climate change assessments with general circulation models. With the Nonhydrostatic ICosahedral Atmospheric Model (NICAM), this study estimated an autoconversion parameter in a large-scale condensation scheme. We investigated two approaches to reducing radiation bias: examining useful satellite observations for parameter estimation and exploring the advantages of estimating spatially varying parameters. The parameter estimation accelerated autoconversion speed when we used liquid water path, outgoing longwave radiation, or outgoing shortwave radiation (OSR). Accelerated autoconversion reduced clouds and mitigated overestimated OSR bias of the NICAM. An ensemble-based DA with horizontal localization can estimate spatially varying parameters. When liquid water path was used, the local parameter estimation resulted in better cloud representations and improved OSR bias in regions where shallow clouds are dominant. ©2020. The Authors.
英文关键词data assimilation; global climate model; large-scale condensation; liquid water path; parameter estimation; radiation
语种英语
来源期刊Journal of Geophysical Research: Atmospheres
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/186250
作者单位RIKEN Center for Computational Science, Kobe, Japan; Center for Center for Environmental Remote Sensing, Chiba University, Chiba, Japan; PRESTO, Japan Science and Technology Agency, Chiba, Japan; RIKEN interdisciplinary Theoretical and Mathematical Sciences Program, Kobe, Japan; RIKEN Cluster for Pioneering Research, Kobe, Japan; Department of Earth and Planetary Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan; Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan; Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, United States
推荐引用方式
GB/T 7714
Kotsuki S.,Sato Y.,Miyoshi T.. Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme[J],2020,125(1).
APA Kotsuki S.,Sato Y.,&Miyoshi T..(2020).Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme.Journal of Geophysical Research: Atmospheres,125(1).
MLA Kotsuki S.,et al."Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme".Journal of Geophysical Research: Atmospheres 125.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kotsuki S.]的文章
[Sato Y.]的文章
[Miyoshi T.]的文章
百度学术
百度学术中相似的文章
[Kotsuki S.]的文章
[Sato Y.]的文章
[Miyoshi T.]的文章
必应学术
必应学术中相似的文章
[Kotsuki S.]的文章
[Sato Y.]的文章
[Miyoshi T.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。